Voir la notice de l'article provenant de la source American Mathematical Society
Tao, Terence 1 ; Vargas, Ana 2 ; Vega, Luis 3
@article{10_1090_S0894_0347_98_00278_1,
     author = {Tao, Terence and Vargas, Ana and Vega, Luis},
     title = {A bilinear approach to the restriction and {Kakeya} conjectures},
     journal = {Journal of the American Mathematical Society},
     pages = {967--1000},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00278-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00278-1/}
}
                      
                      
                    TY - JOUR AU - Tao, Terence AU - Vargas, Ana AU - Vega, Luis TI - A bilinear approach to the restriction and Kakeya conjectures JO - Journal of the American Mathematical Society PY - 1998 SP - 967 EP - 1000 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00278-1/ DO - 10.1090/S0894-0347-98-00278-1 ID - 10_1090_S0894_0347_98_00278_1 ER -
%0 Journal Article %A Tao, Terence %A Vargas, Ana %A Vega, Luis %T A bilinear approach to the restriction and Kakeya conjectures %J Journal of the American Mathematical Society %D 1998 %P 967-1000 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00278-1/ %R 10.1090/S0894-0347-98-00278-1 %F 10_1090_S0894_0347_98_00278_1
Tao, Terence; Vargas, Ana; Vega, Luis. A bilinear approach to the restriction and Kakeya conjectures. Journal of the American Mathematical Society, Tome 11 (1998) no. 4, pp. 967-1000. doi: 10.1090/S0894-0347-98-00278-1
[1] Self-spreading and strength of singularities for solutions to semilinear wave equations Ann. of Math. (2) 1983 187 214
[2] Besicovitch type maximal operators and applications to Fourier analysis Geom. Funct. Anal. 1991 147 187
[3] On the restriction and multiplier problems in ð ³ 1991 179 191
[4] A remark on Schrödinger operators Israel J. Math. 1992 1 16
[5] Estimates for cone multipliers 1995 41 60
[6] Some new estimates on oscillatory integrals 1995 83 112
[7] , Oscillatory integrals and a multiplier problem for the disc Studia Math. 1972
[8] The Kakeya maximal function and the spherical summation multipliers Amer. J. Math. 1977 1 22
[9] ð¿^{ð} estimates for the X-ray transform Illinois J. Math. 1983 125 129
[10] Inequalities for strongly singular convolution operators Acta Math. 1970 9 36
[11] The multiplier problem for the ball Ann. of Math. (2) 1971 330 336
[12] Fourier integral operators. I Acta Math. 1971 79 183
[13] , Space-time estimates for null forms and the local existence theorem Comm. Pure Appl. Math. 1993 1221 1268
[14] , Remark on Strichartz-type inequalities Internat. Math. Res. Notices 1996 201 220
[15] , On the regularity properties of a model problem related to wave maps Duke Math. J. 1997 553 589
[16] , , Schrödinger maximal function and restriction properties of the Fourier transform Internat. Math. Res. Notices 1996 793 815
[17] A generalization of Bourgainâs circular maximal theorem J. Amer. Math. Soc. 1997 103 122
[18] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993
[19] A restriction theorem for the Fourier transform Bull. Amer. Math. Soc. 1975 477 478
[20] An improved bound for Kakeya type maximal functions Rev. Mat. Iberoamericana 1995 651 674
Cité par Sources :
