A bilinear approach to the restriction and Kakeya conjectures
Journal of the American Mathematical Society, Tome 11 (1998) no. 4, pp. 967-1000

Voir la notice de l'article provenant de la source American Mathematical Society

Bilinear restriction estimates have appeared in work of Bourgain, Klainerman, and Machedon. In this paper we develop the theory of these estimates (together with the analogues for Kakeya estimates). As a consequence we improve the $(L^p,L^p)$ spherical restriction theorem of Wolff from $p > 42/11$ to $p > 34/9$, and also obtain a sharp $(L^p,L^q)$ spherical restriction theorem for $q> 4 - \frac {5}{27}$.
DOI : 10.1090/S0894-0347-98-00278-1

Tao, Terence 1 ; Vargas, Ana 2 ; Vega, Luis 3

1 Department of Mathematics, University of California–Los Angeles, Los Angeles, California 90024
2 Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
3 Departamento de Matemáticas, Universidad del País Vasco, Apartado 644, 48080, Bilbao, Spain
@article{10_1090_S0894_0347_98_00278_1,
     author = {Tao, Terence and Vargas, Ana and Vega, Luis},
     title = {A bilinear approach to the restriction and {Kakeya} conjectures},
     journal = {Journal of the American Mathematical Society},
     pages = {967--1000},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00278-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00278-1/}
}
TY  - JOUR
AU  - Tao, Terence
AU  - Vargas, Ana
AU  - Vega, Luis
TI  - A bilinear approach to the restriction and Kakeya conjectures
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 967
EP  - 1000
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00278-1/
DO  - 10.1090/S0894-0347-98-00278-1
ID  - 10_1090_S0894_0347_98_00278_1
ER  - 
%0 Journal Article
%A Tao, Terence
%A Vargas, Ana
%A Vega, Luis
%T A bilinear approach to the restriction and Kakeya conjectures
%J Journal of the American Mathematical Society
%D 1998
%P 967-1000
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00278-1/
%R 10.1090/S0894-0347-98-00278-1
%F 10_1090_S0894_0347_98_00278_1
Tao, Terence; Vargas, Ana; Vega, Luis. A bilinear approach to the restriction and Kakeya conjectures. Journal of the American Mathematical Society, Tome 11 (1998) no. 4, pp. 967-1000. doi: 10.1090/S0894-0347-98-00278-1

[1] Beals, Michael Self-spreading and strength of singularities for solutions to semilinear wave equations Ann. of Math. (2) 1983 187 214

[2] Bourgain, J. Besicovitch type maximal operators and applications to Fourier analysis Geom. Funct. Anal. 1991 147 187

[3] Bourgain, Jean On the restriction and multiplier problems in 𝑅³ 1991 179 191

[4] Bourgain, J. A remark on Schrödinger operators Israel J. Math. 1992 1 16

[5] Bourgain, J. Estimates for cone multipliers 1995 41 60

[6] Bourgain, Jean Some new estimates on oscillatory integrals 1995 83 112

[7] Carleson, Lennart, Sjã¶Lin, Per Oscillatory integrals and a multiplier problem for the disc Studia Math. 1972

[8] Cordoba, Antonio The Kakeya maximal function and the spherical summation multipliers Amer. J. Math. 1977 1 22

[9] Drury, S. W. 𝐿^{𝑝} estimates for the X-ray transform Illinois J. Math. 1983 125 129

[10] Fefferman, Charles Inequalities for strongly singular convolution operators Acta Math. 1970 9 36

[11] Fefferman, Charles The multiplier problem for the ball Ann. of Math. (2) 1971 330 336

[12] Hã¶Rmander, Lars Fourier integral operators. I Acta Math. 1971 79 183

[13] Klainerman, S., Machedon, M. Space-time estimates for null forms and the local existence theorem Comm. Pure Appl. Math. 1993 1221 1268

[14] Klainerman, Sergiu, Machedon, Matei Remark on Strichartz-type inequalities Internat. Math. Res. Notices 1996 201 220

[15] Klainerman, Sergiu, Machedon, Matei On the regularity properties of a model problem related to wave maps Duke Math. J. 1997 553 589

[16] Moyua, A., Vargas, A., Vega, L. Schrödinger maximal function and restriction properties of the Fourier transform Internat. Math. Res. Notices 1996 793 815

[17] Schlag, W. A generalization of Bourgain’s circular maximal theorem J. Amer. Math. Soc. 1997 103 122

[18] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993

[19] Tomas, Peter A. A restriction theorem for the Fourier transform Bull. Amer. Math. Soc. 1975 477 478

[20] Wolff, Thomas An improved bound for Kakeya type maximal functions Rev. Mat. Iberoamericana 1995 651 674

Cité par Sources :