Factorization and approximation problems for matrix functions
Journal of the American Mathematical Society, Tome 11 (1998) no. 4, pp. 751-770

Voir la notice de l'article provenant de la source American Mathematical Society

We study maximizing vectors of Hankel operators with matrix-valued symbols. This study leads to a solution of the so-called recovery problem for unitary-valued functions and to a new approach to Wiener–Hopf factorizations for functions in a function space $X$ satisfying natural conditions. Finally, we improve earlier results of Peller and Young on hereditary properties of the operator of superoptimal approximation by analytic matrix functions.
DOI : 10.1090/S0894-0347-98-00274-4

Peller, V. 1

1 Department of Mathematics, Kansas State University, Manhattan, Kansas 66506
@article{10_1090_S0894_0347_98_00274_4,
     author = {Peller, V.},
     title = {Factorization and approximation problems for matrix functions},
     journal = {Journal of the American Mathematical Society},
     pages = {751--770},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00274-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00274-4/}
}
TY  - JOUR
AU  - Peller, V.
TI  - Factorization and approximation problems for matrix functions
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 751
EP  - 770
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00274-4/
DO  - 10.1090/S0894-0347-98-00274-4
ID  - 10_1090_S0894_0347_98_00274_4
ER  - 
%0 Journal Article
%A Peller, V.
%T Factorization and approximation problems for matrix functions
%J Journal of the American Mathematical Society
%D 1998
%P 751-770
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00274-4/
%R 10.1090/S0894-0347-98-00274-4
%F 10_1090_S0894_0347_98_00274_4
Peller, V. Factorization and approximation problems for matrix functions. Journal of the American Mathematical Society, Tome 11 (1998) no. 4, pp. 751-770. doi: 10.1090/S0894-0347-98-00274-4

[1] Adamjan, V. M., Arov, D. Z., Kreä­N, M. G. Infinite Hankel block matrices and related problems of extension Izv. Akad. Nauk Armjan. SSR Ser. Mat. 1971 87 112

[2] Budjanu, M. S., Gohberg, I. C. General theorems on the factorization of matrix-valued functions. I. The fundamental theorem Mat. Issled. 1968 87 103

[3] Budjanu, M. S., Gohberg, I. C. General theorems on the factorization of matrix-valued functions. I. The fundamental theorem Mat. Issled. 1968 87 103

[4] Clancey, Kevin F., Gohberg, Israel Factorization of matrix functions and singular integral operators 1981

[5] Carleson, Lennart, Jacobs, Sigvard Best uniform approximation by analytic functions Ark. Mat. 1972 219 229

[6] Dym, Harry, Gohberg, Israel Unitary interpolants, factorization indices and infinite Hankel block matrices J. Funct. Anal. 1983 229 289

[7] Gohberg, I. C. The factorization problem in normed rings, functions of isometric and symmetric operators, and singular integral equations Uspehi Mat. Nauk 1964 71 124

[8] Gohberg, I. C., Kreä­N, M. G. Systems of integral equations on the half-line with kernels depending on the difference of the arguments Uspehi Mat. Nauk (N.S.) 1958 3 72

[9] Nakayama, Tadasi On Frobeniusean algebras. I Ann. of Math. (2) 1939 611 633

[10] Litvinchuk, Georgii S., Spitkovskii, Ilia M. Factorization of measurable matrix functions 1987 372

[11] Perlis, Sam Maximal orders in rational cyclic algebras of composite degree Trans. Amer. Math. Soc. 1939 82 96

[12] Nikol′Skiä­, N. K. Treatise on the shift operator 1986

[13] Papadimitrakis, M. On best uniform approximation by bounded analytic functions Bull. London Math. Soc. 1996 15 18

[14] Peller, V. V. Description of Hankel operators of the class 𝔖_{𝔭} for 𝔭>0, investigation of the rate of rational approximation and other applications Mat. Sb. (N.S.) 1983 481 510

[15] Peller, Vladimir V. Hankel operators and multivariate stationary processes 1990 357 371

[16] Peller, V. V. Hankel operators and continuity properties of best approximation operators Algebra i Analiz 1990 163 189

[17] Peller, Vladimir V. Boundedness properties of the operators of best approximation by analytic and meromorphic functions Ark. Mat. 1992 331 343

[18] Peller, V. V. Approximation by analytic operator-valued functions 1995 431 448

[19] Peller, V. V., Khrushchã«V, S. V. Hankel operators, best approximations and stationary Gaussian processes Uspekhi Mat. Nauk 1982

[20] Peller, V. V., Young, N. J. Superoptimal analytic approximations of matrix functions J. Funct. Anal. 1994 300 343

[21] Peller, V. V., Young, N. J. Continuity properties of best analytic approximation J. Reine Angew. Math. 1997 1 22

[22] Rozanov, Ju. A. Statsionarnye sluchaÄ­ nye protsessy 1963 284

[23] Simonenko, I. B. Certain general questions of the theory of the Riemann boundary value problem Izv. Akad. Nauk SSSR Ser. Mat. 1968 1138 1146

[24] Tolokonnikov, V. A. Generalized Douglas algebras Algebra i Analiz 1991 231 252

[25] Treil, Serguei On superoptimal approximation by analytic and meromorphic matrix-valued functions J. Funct. Anal. 1995 386 414

[26] Everett, C. J., Jr. Annihilator ideals and representation iteration for abstract rings Duke Math. J. 1939 623 627

Cité par Sources :