Local Rankin-Selberg convolutions for 𝐺𝐿_{𝑛}: Explicit conductor formula
Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 703-730

Voir la notice de l'article provenant de la source American Mathematical Society

Let $F$ be a non-Archimedean local field and $n_{1}$, $n_{2}$ positive integers. For $i=1,2$, let $G_{i}=\mathrm {GL}_{n_{i}}(F)$ and let $\pi _{i}$ be an irreducible supercuspidal representation of $G_{i}$. Jacquet, Piatetskii-Shapiro and Shalika have defined a local constant $\varepsilon (\pi _{1}\times \pi _{2},s,\psi )$ to the $\pi _{i}$ and an additive character $\psi$ of $F$. This object is of central importance in the study of the local Langlands conjecture. It takes the form \begin{equation*}\varepsilon (\pi _{1}\times \pi _{2},s,\psi ) = q^{-fs}\varepsilon (\pi _{1} \times \pi _{2},0,\psi ), \end{equation*} where $f=f(\pi _{1}\times \pi _{2},\psi )$ is an integer. The irreducible supercuspidal representations of $G=\mathrm {GL}_{n}(F)$ have been described explicitly by Bushnell and Kutzko, via induction from open, compact mod centre, subgroups of $G$. This paper gives an explicit formula for $f(\pi _{1} \times \pi _{2},\psi )$ in terms of the inducing data for the $\pi _{i}$. It uses, on the one hand, the alternative approach to the local constant due to Shahidi, and, on the other, the general theory of types along with powerful existence theorems for types in $\mathrm {GL}(n)$, developed by Bushnell and Kutzko.
DOI : 10.1090/S0894-0347-98-00270-7

Bushnell, Colin 1 ; Henniart, Guy 2 ; Kutzko, Philip 3

1 Department of Mathematics, King’s College, Strand, London WC2R 2LS, United Kingdom
2 Département de Mathématiques, URA 752 du CNRS, Université de Paris-Sud, 91405 Orsay Cedex, France
3 Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
@article{10_1090_S0894_0347_98_00270_7,
     author = {Bushnell, Colin and Henniart, Guy and Kutzko, Philip},
     title = {Local {Rankin-Selberg} convolutions for {\dh}{\textordmasculine}{\dh}{\textquestiondown}_{{\dh}‘›}: {Explicit} conductor formula},
     journal = {Journal of the American Mathematical Society},
     pages = {703--730},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00270-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00270-7/}
}
TY  - JOUR
AU  - Bushnell, Colin
AU  - Henniart, Guy
AU  - Kutzko, Philip
TI  - Local Rankin-Selberg convolutions for 𝐺𝐿_{𝑛}: Explicit conductor formula
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 703
EP  - 730
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00270-7/
DO  - 10.1090/S0894-0347-98-00270-7
ID  - 10_1090_S0894_0347_98_00270_7
ER  - 
%0 Journal Article
%A Bushnell, Colin
%A Henniart, Guy
%A Kutzko, Philip
%T Local Rankin-Selberg convolutions for 𝐺𝐿_{𝑛}: Explicit conductor formula
%J Journal of the American Mathematical Society
%D 1998
%P 703-730
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00270-7/
%R 10.1090/S0894-0347-98-00270-7
%F 10_1090_S0894_0347_98_00270_7
Bushnell, Colin; Henniart, Guy; Kutzko, Philip. Local Rankin-Selberg convolutions for 𝐺𝐿_{𝑛}: Explicit conductor formula. Journal of the American Mathematical Society, Tome 11 (1998) no. 3, pp. 703-730. doi: 10.1090/S0894-0347-98-00270-7

[1] Bernstein, J. N. Le “centre” de Bernstein 1984 1 32

[2] Bushnell, Colin J. Hereditary orders, Gauss sums and supercuspidal representations of 𝐺𝐿_{𝑁} J. Reine Angew. Math. 1987 184 210

[3] Bushnell, Colin J., Kutzko, Philip C. The admissible dual of 𝐺𝐿(𝑁) via compact open subgroups 1993

[4] Gel′Fand, I. M., Kaå¾Dan, D. A. Representations of the group 𝐺𝐿(𝑛,𝐾) where 𝐾 is a local field Funkcional. Anal. i Priložen. 1972 73 74

[5] Godement, Roger, Jacquet, Hervã© Zeta functions of simple algebras 1972

[6] Harish-Chandra Harmonic analysis on reductive 𝑝-adic groups 1973 167 192

[7] Henniart, Guy Caractérisation de la correspondance de Langlands locale par les facteurs 𝜀 de paires Invent. Math. 1993 339 350

[8] Jacquet, H., Piatetski-Shapiro, I. I., Shalika, J. Conducteur des représentations du groupe linéaire Math. Ann. 1981 199 214

[9] Jacquet, H., Piatetskii-Shapiro, I. I., Shalika, J. A. Rankin-Selberg convolutions Amer. J. Math. 1983 367 464

[10] Rodier, Franã§Ois Whittaker models for admissible representations of reductive 𝑝-adic split groups 1973 425 430

[11] Shahidi, Freydoon On certain 𝐿-functions Amer. J. Math. 1981 297 355

[12] Shahidi, Freydoon Fourier transforms of intertwining operators and Plancherel measures for 𝐺𝐿(𝑛) Amer. J. Math. 1984 67 111

[13] Shahidi, Freydoon A proof of Langlands’ conjecture on Plancherel measures Ann. of Math. (2) 1990 273 330

[14] Silberger, Allan J. Introduction to harmonic analysis on reductive 𝑝-adic groups 1979

Cité par Sources :