Geometric realization of Whittaker functions and the Langlands conjecture
Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 451-484

Voir la notice de l'article provenant de la source American Mathematical Society

We prove the equivalence of two conjectural constructions of unramified cuspidal automorphic functions on the adelic group $GL_n(\mathbb A)$ associated to an irreducible $\ell$–adic local system of rank $n$ on an algebraic curve $X$ over a finite field. The existence of such a function is predicted by the Langlands conjecture. The first construction, which was proposed by Shalika and Piatetski-Shapiro following Weil and Jacquet-Langlands ($n=2$), is based on considering the Whittaker function. The second construction, which was proposed recently by Laumon following Drinfeld ($n=2$) and Deligne ($n=1$), is geometric: the automorphic function is obtained via Grothendieck’s “faisceaux-fonctions” correspondence from a complex of sheaves on an algebraic stack. Our proof of their equivalence is based on a local result about the spherical Hecke algebra, which we prove for an arbitrary reductive group. We also discuss a geometric interpretation of this result.
DOI : 10.1090/S0894-0347-98-00260-4

Frenkel, E. 1 ; Gaitsgory, D. 2 ; Kazhdan, D. 1 ; Vilonen, K. 3

1 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
2 School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
3 Department of Mathematics, Brandeis University, Waltham, Massachusetts 02254
@article{10_1090_S0894_0347_98_00260_4,
     author = {Frenkel, E. and Gaitsgory, D. and Kazhdan, D. and Vilonen, K.},
     title = {Geometric realization of {Whittaker} functions and the {Langlands} conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {451--484},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00260-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00260-4/}
}
TY  - JOUR
AU  - Frenkel, E.
AU  - Gaitsgory, D.
AU  - Kazhdan, D.
AU  - Vilonen, K.
TI  - Geometric realization of Whittaker functions and the Langlands conjecture
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 451
EP  - 484
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00260-4/
DO  - 10.1090/S0894-0347-98-00260-4
ID  - 10_1090_S0894_0347_98_00260_4
ER  - 
%0 Journal Article
%A Frenkel, E.
%A Gaitsgory, D.
%A Kazhdan, D.
%A Vilonen, K.
%T Geometric realization of Whittaker functions and the Langlands conjecture
%J Journal of the American Mathematical Society
%D 1998
%P 451-484
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00260-4/
%R 10.1090/S0894-0347-98-00260-4
%F 10_1090_S0894_0347_98_00260_4
Frenkel, E.; Gaitsgory, D.; Kazhdan, D.; Vilonen, K. Geometric realization of Whittaker functions and the Langlands conjecture. Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 451-484. doi: 10.1090/S0894-0347-98-00260-4

[1] Kantorovitch, L. The method of successive approximations for functional equations Acta Math. 1939 63 97

[2] Beauville, Arnaud, Laszlo, Yves Un lemme de descente C. R. Acad. Sci. Paris Sér. I Math. 1995 335 340

[3] Brylinski, Ranee Kathryn Limits of weight spaces, Lusztig’s 𝑞-analogs, and fiberings of adjoint orbits J. Amer. Math. Soc. 1989 517 533

[4] Casselman, W., Shalika, J. The unramified principal series of 𝑝-adic groups. II. The Whittaker function Compositio Math. 1980 207 231

[5] Deligne, Pierre La conjecture de Weil. II Inst. Hautes Études Sci. Publ. Math. 1980 137 252

[6] Drinfel′D, V. G. Two-dimensional 𝑙-adic representations of the fundamental group of a curve over a finite field and automorphic forms on 𝐺𝐿(2) Amer. J. Math. 1983 85 114

[7] Drinfel′D, V. G., Simpson, Carlos 𝐵-structures on 𝐺-bundles and local triviality Math. Res. Lett. 1995 823 829

[8] Gel′Fand, I. M., Kajdan, D. A. Representations of the group 𝐺𝐿(𝑛,𝐾) where 𝐾 is a local field 1975 95 118

[9] Gross, Benedict H., Prasad, Dipendra On the decomposition of a representation of 𝑆𝑂_{𝑛} when restricted to 𝑆𝑂_{𝑛-1} Canad. J. Math. 1992 974 1002

[10] Rã¡Dl, Franz Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen Math. Z. 1939 429 446

[11] Jacquet, H., Langlands, R. P. Automorphic forms on 𝐺𝐿(2) 1970

[12] Jacquet, Hervã©, Piatetski-Shapiro, Ilja Iosifovitch, Shalika, Joseph Automorphic forms on 𝐺𝐿(3). I Ann. of Math. (2) 1979 169 212

[13] Kato, Shin-Ichi Spherical functions and a 𝑞-analogue of Kostant’s weight multiplicity formula Invent. Math. 1982 461 468

[14] Kostant, Bertram Lie group representations on polynomial rings Amer. J. Math. 1963 327 404

[15] Langlands, R. P. Problems in the theory of automorphic forms 1970 18 61

[16] Laumon, G. Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil Inst. Hautes Études Sci. Publ. Math. 1987 131 210

[17] Laumon, Gã©Rard Correspondance de Langlands géométrique pour les corps de fonctions Duke Math. J. 1987 309 359

[18] Laumon, G. Faisceaux automorphes liés aux séries d’Eisenstein 1990 227 281

[19] Lusztig, G. Green polynomials and singularities of unipotent classes Adv. in Math. 1981 169 178

[20] Lusztig, George Singularities, character formulas, and a 𝑞-analog of weight multiplicities 1983 208 229

[21] Macdonald, I. G. Spherical functions on a group of 𝑝-adic type 1971

[22] Pjateckij-Å Apiro, I. I. Euler subgroups 1975 597 620

[23] Satake, Ichir㴠Theory of spherical functions on reductive algebraic groups over 𝔭-adic fields Inst. Hautes Études Sci. Publ. Math. 1963 5 69

[24] Shalika, J. A. The multiplicity one theorem for 𝐺𝐿_{𝑛} Ann. of Math. (2) 1974 171 193

[25] Shintani, Takuro On an explicit formula for class-1 “Whittaker functions” on 𝐺𝐿_{𝑛} over 𝑃-adic fields Proc. Japan Acad. 1976 180 182

Cité par Sources :