Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_98_00258_6,
author = {Becker, Howard},
title = {Polish group actions: {Dichotomies} and generalized elementary embeddings},
journal = {Journal of the American Mathematical Society},
pages = {397--449},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1998},
doi = {10.1090/S0894-0347-98-00258-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00258-6/}
}
TY - JOUR AU - Becker, Howard TI - Polish group actions: Dichotomies and generalized elementary embeddings JO - Journal of the American Mathematical Society PY - 1998 SP - 397 EP - 449 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00258-6/ DO - 10.1090/S0894-0347-98-00258-6 ID - 10_1090_S0894_0347_98_00258_6 ER -
%0 Journal Article %A Becker, Howard %T Polish group actions: Dichotomies and generalized elementary embeddings %J Journal of the American Mathematical Society %D 1998 %P 397-449 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00258-6/ %R 10.1090/S0894-0347-98-00258-6 %F 10_1090_S0894_0347_98_00258_6
Becker, Howard. Polish group actions: Dichotomies and generalized elementary embeddings. Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 397-449. doi: 10.1090/S0894-0347-98-00258-6
[1] Admissible sets and structures 1975
[2] The topological Vaughtâs conjecture and minimal counterexamples J. Symbolic Logic 1994 757 784
[3] Martinâs conjecture for ð-stable theories Israel J. Math. 1984 15 25
[4] Equivalences generated by families of Borel sets Proc. Amer. Math. Soc. 1978 323 326
[5] Effective enumeration of classes in a Σ¹â equivalence relation Indiana Univ. Math. J. 1979 353 364
[6] Dual et quasi-dual dâune algèbre de Banach involutive Trans. Amer. Math. Soc. 1962 278 283
[7] Transformation groups and ð¶*-algebras Ann. of Math. (2) 1965 38 55
[8] Polish transformation groups and classification problems 1981 217 227
[9] Countable models of set theories 1973 539 573
[10] , A Borel reducibility theory for classes of countable structures J. Symbolic Logic 1989 894 914
[11] Locally compact transformation groups Trans. Amer. Math. Soc. 1961 124 138
[12] Analytic determinacy and 0^{â¯} J. Symbolic Logic 1978 685 693
[13] , , A Glimm-Effros dichotomy for Borel equivalence relations J. Amer. Math. Soc. 1990 903 928
[14] , Equivalence relations, projective and beyond 1979 247 264
[15] , Counting equivalence classes for co-ð -Souslin equivalence relations 1982 147 152
[16] Model theory 1993
[17] Set theory 1978
[18] The higher infinite 1994
[19] The structure of Borel equivalence relations in Polish spaces 1992 89 102
[20] Topology and descriptive set theory Topology Appl. 1994 195 222
[21] Classical descriptive set theory 1995
[22] , The classification of hypersmooth Borel equivalence relations J. Amer. Math. Soc. 1997 215 242
[23] Model theory for infinitary logic. Logic with countable conjunctions and finite quantifiers 1971
[24] Set theory 1980
[25] The invariant Î â°_{ð¼} separation principle Trans. Amer. Math. Soc. 1978 185 204
[26] Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45
[27] Structure and order structure in Abelian groups Colloq. Math. 1968 199 209
[28] Descriptive set theory 1980
[29] The theory of groups. An introduction 1965
[30] Polish group actions and the Vaught conjecture Trans. Amer. Math. Soc. 1994 335 353
[31] Counting the number of equivalence classes of Borel and coanalytic equivalence relations Ann. Math. Logic 1980 1 28
[32] Equivalence relations induced by actions of Polish groups Trans. Amer. Math. Soc. 1995 4765 4777
[33] Forcing with tagged trees Ann. Math. Logic 1978 55 74
[34] On Vaughtâs conjecture 1978 193 208
[35] On Lusinâs restricted continuum problem Ann. of Math. (2) 1984 7 37
[36] Orbits of denumerable models of complete theories Fund. Math. 1970 89 95
[37] Denumerable models of complete theories 1961 303 321
[38] On Martinâs conjecture Ann. Math. Logic 1982 47 67
Cité par Sources :