Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_98_00253_7,
author = {Wenzl, Hans},
title = {{\dh}{\textparagraph}* tensor categories from quantum groups},
journal = {Journal of the American Mathematical Society},
pages = {261--282},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1998},
doi = {10.1090/S0894-0347-98-00253-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00253-7/}
}
TY - JOUR AU - Wenzl, Hans TI - ð¶* tensor categories from quantum groups JO - Journal of the American Mathematical Society PY - 1998 SP - 261 EP - 282 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00253-7/ DO - 10.1090/S0894-0347-98-00253-7 ID - 10_1090_S0894_0347_98_00253_7 ER -
%0 Journal Article %A Wenzl, Hans %T ð¶* tensor categories from quantum groups %J Journal of the American Mathematical Society %D 1998 %P 261-282 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00253-7/ %R 10.1090/S0894-0347-98-00253-7 %F 10_1090_S0894_0347_98_00253_7
Wenzl, Hans. ð¶* tensor categories from quantum groups. Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 261-282. doi: 10.1090/S0894-0347-98-00253-7
[1] Tensor products of quantized tilting modules Comm. Math. Phys. 1992 149 159
[2] , Fusion categories arising from semisimple Lie algebras Comm. Math. Phys. 1995 563 588
[3] Quantum groups 1987 798 820
[4] Almost cocommutative Hopf algebras Algebra i Analiz 1989 30 46
[5] , Orbifold subfactors from Hecke algebras Comm. Math. Phys. 1994 445 484
[6] , , Coxeter graphs and towers of algebras 1989
[7] , Littlewood-Richardson coefficients for Hecke algebras at roots of unity Adv. Math. 1990 244 265
[8] Introduction to Lie algebras and representation theory 1972
[9] Index for subfactors Invent. Math. 1983 1 25
[10] , The geometry of tensor calculus. I Adv. Math. 1991 55 112
[11] Infinite-dimensional Lie algebras 1990
[12] On crystal bases of the ð-analogue of universal enveloping algebras Duke Math. J. 1991 465 516
[13] Quantum groups 1995
[14] , Tensor structures arising from affine Lie algebras. I, II J. Amer. Math. Soc. 1993
[15] On an inner product in modular tensor categories J. Amer. Math. Soc. 1996 1135 1169
[16] , ð-Weyl group and a multiplicative formula for universal ð -matrices Comm. Math. Phys. 1990 421 431
[17] , Some applications of the quantum Weyl groups J. Geom. Phys. 1990 241 254
[18] Paths and root operators in representation theory Ann. of Math. (2) 1995 499 525
[19] Introduction to quantum groups 1993
[20] , Lie groups and algebraic groups 1990
[21] , Entropy and index for subfactors Ann. Sci. Ãcole Norm. Sup. (4) 1986 57 106
[22] Classification of subfactors: the reduction to commuting squares Invent. Math. 1990 19 43
[23] An axiomatization of the lattice of higher relative commutants of a subfactor Invent. Math. 1995 427 445
[24] , Quantum invariants of 3-manifolds associated with classical simple Lie algebras Internat. J. Math. 1993 323 358
[25] Quantum invariants of knots and 3-manifolds 1994
[26] Fusion rules and modular transformations in 2D conformal field theory Nuclear Phys. B 1988 360 376
[27] Coactions and Yang-Baxter equations for ergodic actions and subfactors 1988 203 236
[28] Operator algebras and conformal field theory 1995 966 979
[29] Hecke algebras of type ð´_{ð} and subfactors Invent. Math. 1988 349 383
[30] Quantum groups and subfactors of type ðµ, ð¶, and ð· Comm. Math. Phys. 1990 383 432
Cité par Sources :