𝐶* tensor categories from quantum groups
Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 261-282

Voir la notice de l'article provenant de la source American Mathematical Society

Let $\mathfrak g$ be a semisimple Lie algebra and let $d$ be the ratio between the square of the lengths of a long and a short root. Moreover, let $\mathcal F$ be the quotient category of the category of tilting modules of $U_q\mathfrak g$ modulo the ideal of tilting modules with zero $q$-dimension for $q=e^{\pm \pi i/dl}$. We show that for $l$ a sufficiently large integer, the morphisms of $\mathcal F$ are Hilbert spaces satisfying functorial properties. As an application, we obtain a subfactor of the hyperfinite II$_1$ factor for each object of $\mathcal F$.
DOI : 10.1090/S0894-0347-98-00253-7

Wenzl, Hans 1

1 Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0112
@article{10_1090_S0894_0347_98_00253_7,
     author = {Wenzl, Hans},
     title = {{\dh}{\textparagraph}* tensor categories from quantum groups},
     journal = {Journal of the American Mathematical Society},
     pages = {261--282},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1998},
     doi = {10.1090/S0894-0347-98-00253-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00253-7/}
}
TY  - JOUR
AU  - Wenzl, Hans
TI  - 𝐶* tensor categories from quantum groups
JO  - Journal of the American Mathematical Society
PY  - 1998
SP  - 261
EP  - 282
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00253-7/
DO  - 10.1090/S0894-0347-98-00253-7
ID  - 10_1090_S0894_0347_98_00253_7
ER  - 
%0 Journal Article
%A Wenzl, Hans
%T 𝐶* tensor categories from quantum groups
%J Journal of the American Mathematical Society
%D 1998
%P 261-282
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-98-00253-7/
%R 10.1090/S0894-0347-98-00253-7
%F 10_1090_S0894_0347_98_00253_7
Wenzl, Hans. 𝐶* tensor categories from quantum groups. Journal of the American Mathematical Society, Tome 11 (1998) no. 2, pp. 261-282. doi: 10.1090/S0894-0347-98-00253-7

[1] Andersen, Henning Haahr Tensor products of quantized tilting modules Comm. Math. Phys. 1992 149 159

[2] Andersen, Henning Haahr, Paradowski, Jan Fusion categories arising from semisimple Lie algebras Comm. Math. Phys. 1995 563 588

[3] Drinfel′D, V. G. Quantum groups 1987 798 820

[4] Drinfel′D, V. G. Almost cocommutative Hopf algebras Algebra i Analiz 1989 30 46

[5] Evans, David E., Kawahigashi, Yasuyuki Orbifold subfactors from Hecke algebras Comm. Math. Phys. 1994 445 484

[6] Goodman, Frederick M., De La Harpe, Pierre, Jones, Vaughan F. R. Coxeter graphs and towers of algebras 1989

[7] Goodman, Frederick M., Wenzl, Hans Littlewood-Richardson coefficients for Hecke algebras at roots of unity Adv. Math. 1990 244 265

[8] Humphreys, James E. Introduction to Lie algebras and representation theory 1972

[9] Jones, V. F. R. Index for subfactors Invent. Math. 1983 1 25

[10] Joyal, Andrã©, Street, Ross The geometry of tensor calculus. I Adv. Math. 1991 55 112

[11] Kac, Victor G. Infinite-dimensional Lie algebras 1990

[12] Kashiwara, M. On crystal bases of the 𝑄-analogue of universal enveloping algebras Duke Math. J. 1991 465 516

[13] Kassel, Christian Quantum groups 1995

[14] Kazhdan, D., Lusztig, G. Tensor structures arising from affine Lie algebras. I, II J. Amer. Math. Soc. 1993

[15] Kirillov, Alexander A., Jr. On an inner product in modular tensor categories J. Amer. Math. Soc. 1996 1135 1169

[16] Kirillov, A. N., Reshetikhin, N. 𝑞-Weyl group and a multiplicative formula for universal 𝑅-matrices Comm. Math. Phys. 1990 421 431

[17] Levendorskiä­, S. Z., Soä­Bel′Man, Ya. S. Some applications of the quantum Weyl groups J. Geom. Phys. 1990 241 254

[18] Littelmann, Peter Paths and root operators in representation theory Ann. of Math. (2) 1995 499 525

[19] Lusztig, George Introduction to quantum groups 1993

[20] Onishchik, A. L., Vinberg, È. B. Lie groups and algebraic groups 1990

[21] Pimsner, Mihai, Popa, Sorin Entropy and index for subfactors Ann. Sci. École Norm. Sup. (4) 1986 57 106

[22] Popa, S. Classification of subfactors: the reduction to commuting squares Invent. Math. 1990 19 43

[23] Popa, Sorin An axiomatization of the lattice of higher relative commutants of a subfactor Invent. Math. 1995 427 445

[24] Turaev, V., Wenzl, H. Quantum invariants of 3-manifolds associated with classical simple Lie algebras Internat. J. Math. 1993 323 358

[25] Turaev, V. G. Quantum invariants of knots and 3-manifolds 1994

[26] Verlinde, Erik Fusion rules and modular transformations in 2D conformal field theory Nuclear Phys. B 1988 360 376

[27] Wassermann, Antony Coactions and Yang-Baxter equations for ergodic actions and subfactors 1988 203 236

[28] Wassermann, Antony J. Operator algebras and conformal field theory 1995 966 979

[29] Wenzl, Hans Hecke algebras of type 𝐴_{𝑛} and subfactors Invent. Math. 1988 349 383

[30] Wenzl, Hans Quantum groups and subfactors of type 𝐵, 𝐶, and 𝐷 Comm. Math. Phys. 1990 383 432

Cité par Sources :