A polynomially bounded operator on Hilbert space which is not similar to a contraction
Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 351-369

Voir la notice de l'article provenant de la source American Mathematical Society

Let $\varepsilon >0$. We prove that there exists an operator $T_{\varepsilon }:\ell _{2}\to \ell _{2}$ such that for any polynomial $P$ we have $\|{P(T_{\varepsilon })}\| \leq (1+\varepsilon ) \|{P}\|_{\infty }$, but $T_{\varepsilon }$ is not similar to a contraction, i.e. there does not exist an invertible operator $S: \ell _{2}\to \ell _{2}$ such that $\|{S^{-1}T_{\varepsilon }S}\|\leq 1$. This answers negatively a question attributed to Halmos after his well-known 1970 paper (“Ten problems in Hilbert space"). We also give some related finite-dimensional estimates.
DOI : 10.1090/S0894-0347-97-00227-0

Pisier, Gilles 1, 2

1 Department of Mathematics, Texas A&M University, College Station, Texas 77843
2 Université Paris VI, Equipe d’Analyse, Case 186, 75252 Paris Cedex 05, France
@article{10_1090_S0894_0347_97_00227_0,
     author = {Pisier, Gilles},
     title = {A polynomially bounded operator on {Hilbert} space which is not similar to a contraction},
     journal = {Journal of the American Mathematical Society},
     pages = {351--369},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1997},
     doi = {10.1090/S0894-0347-97-00227-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00227-0/}
}
TY  - JOUR
AU  - Pisier, Gilles
TI  - A polynomially bounded operator on Hilbert space which is not similar to a contraction
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 351
EP  - 369
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00227-0/
DO  - 10.1090/S0894-0347-97-00227-0
ID  - 10_1090_S0894_0347_97_00227_0
ER  - 
%0 Journal Article
%A Pisier, Gilles
%T A polynomially bounded operator on Hilbert space which is not similar to a contraction
%J Journal of the American Mathematical Society
%D 1997
%P 351-369
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00227-0/
%R 10.1090/S0894-0347-97-00227-0
%F 10_1090_S0894_0347_97_00227_0
Pisier, Gilles. A polynomially bounded operator on Hilbert space which is not similar to a contraction. Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 351-369. doi: 10.1090/S0894-0347-97-00227-0

[1] Bratteli, Ola, Robinson, Derek W. Operator algebras and quantum-statistical mechanics. II 1981

[2] Bourgain, J. New Banach space properties of the disc algebra and 𝐻^{∞} Acta Math. 1984 1 48

[3] Bourgain, J. On the similarity problem for polynomially bounded operators on Hilbert space Israel J. Math. 1986 227 241

[4] Blecher, David P., Paulsen, Vern I. Tensor products of operator spaces J. Funct. Anal. 1991 262 292

[5] Burkholder, D. L. Distribution function inequalities for martingales Ann. Probability 1973 19 42

[6] Duren, Peter L. Theory of 𝐻^{𝑝} spaces 1970

[7] Durrett, Richard Brownian motion and martingales in analysis 1984

[8] Effros, Edward G., Ruan, Zhong-Jin A new approach to operator spaces Canad. Math. Bull. 1991 329 337

[9] Foguel, S. R. A counterexample to a problem of Sz.-Nagy Proc. Amer. Math. Soc. 1964 788 790

[10] Fefferman, C., Stein, E. M. 𝐻^{𝑝} spaces of several variables Acta Math. 1972 137 193

[11] Garsia, Adriano M. Martingale inequalities: Seminar notes on recent progress 1973

[12] Haagerup, Uffe Injectivity and decomposition of completely bounded maps 1985 170 222

[13] Halmos, P. R. Ten problems in Hilbert space Bull. Amer. Math. Soc. 1970 887 933

[14] Halmos, P. R. On Foguel’s answer to Nagy’s question Proc. Amer. Math. Soc. 1964 791 793

[15] Junge, M., Pisier, G. Bilinear forms on exact operator spaces and 𝐵(𝐻)⊗𝐵(𝐻) Geom. Funct. Anal. 1995 329 363

[16] Lebow, A. A power-bounded operator that is not polynomially bounded Michigan Math. J. 1968 397 399

[17] Lust-Piquard, Franã§Oise, Pisier, Gilles Noncommutative Khintchine and Paley inequalities Ark. Mat. 1991 241 260

[18] Everett, C. J., Jr. Annihilator ideals and representation iteration for abstract rings Duke Math. J. 1939 623 627

[19] Nikol′Skiä­, N. K. Treatise on the shift operator 1986

[20] Paulsen, Vern I. Completely bounded maps and dilations 1986

[21] Paulsen, Vern I. Every completely polynomially bounded operator is similar to a contraction J. Funct. Anal. 1984 1 17

[22] Page, Lavon B. Bounded and compact vectorial Hankel operators Trans. Amer. Math. Soc. 1970 529 539

[23] Peller, Vladimir V. Estimates of functions of power bounded operators on Hilbert spaces J. Operator Theory 1982 341 372

[24] Linear and complex analysis problem book 1984

[25] Peller, Vladimir V. Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class 𝛾_{𝑝} Integral Equations Operator Theory 1982 244 272

[26] Petersen, Karl Endel Brownian motion, Hardy spaces and bounded mean oscillation 1977

[27] Pisier, Gilles Factorization of linear operators and geometry of Banach spaces 1986

[28] Pisier, Gilles Factorization of operator valued analytic functions Adv. Math. 1992 61 125

[29] Pisier, Gilles Multipliers and lacunary sets in non-amenable groups Amer. J. Math. 1995 337 376

[30] Harmonic analysis in Euclidean spaces. Part 1 1979

[31] Sarason, Donald Generalized interpolation in 𝐻^{∞} Trans. Amer. Math. Soc. 1967 179 203

[32] Sz.-Nagy, Bã©La Completely continuous operators with uniformly bounded iterates Magyar Tud. Akad. Mat. Kutató Int. Közl. 1959 89 93

[33] Sz.-Nagy, Bã©La, FoiaåŸ, Ciprian Harmonic analysis of operators on Hilbert space 1970

[34] Stafney, James D. A class of operators and similarity to contractions Michigan Math. J. 1994 509 521

[35] Tomczak-Jaegermann, Nicole Banach-Mazur distances and finite-dimensional operator ideals 1989

[36] Treil′, S. R. Geometric methods in spectral theory of vector-valued functions: some recent results 1989 209 280

Cité par Sources :