Mod 2 and mod 5 icosahedral representations
Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 283-298

Voir la notice de l'article provenant de la source American Mathematical Society

DOI : 10.1090/S0894-0347-97-00226-9

Shepherd-Barron, N. 1 ; Taylor, R. 2

1 Department of Pure Mathematics and Mathematical Statistics, Cambridge University, 16 Mill Lane, Cambridge CB2 1SB, United Kingdom
2 Department of Mathematics, Harvard University, 1 Oxford St., Cambridge, Massachusetts 02138
@article{10_1090_S0894_0347_97_00226_9,
     author = {Shepherd-Barron, N. and Taylor, R.},
     title = {Mod 2 and mod 5 icosahedral representations},
     journal = {Journal of the American Mathematical Society},
     pages = {283--298},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1997},
     doi = {10.1090/S0894-0347-97-00226-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00226-9/}
}
TY  - JOUR
AU  - Shepherd-Barron, N.
AU  - Taylor, R.
TI  - Mod 2 and mod 5 icosahedral representations
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 283
EP  - 298
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00226-9/
DO  - 10.1090/S0894-0347-97-00226-9
ID  - 10_1090_S0894_0347_97_00226_9
ER  - 
%0 Journal Article
%A Shepherd-Barron, N.
%A Taylor, R.
%T Mod 2 and mod 5 icosahedral representations
%J Journal of the American Mathematical Society
%D 1997
%P 283-298
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00226-9/
%R 10.1090/S0894-0347-97-00226-9
%F 10_1090_S0894_0347_97_00226_9
Shepherd-Barron, N.; Taylor, R. Mod 2 and mod 5 icosahedral representations. Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 283-298. doi: 10.1090/S0894-0347-97-00226-9

[1] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A. 𝔸𝕋𝕃𝔸𝕊 of finite groups 1985

[2] Ash, Avner, Stevens, Glenn Modular forms in characteristic 𝑙 and special values of their 𝐿-functions Duke Math. J. 1986 849 868

[3] Dolgachev, Igor, Ortland, David Point sets in projective spaces and theta functions Astérisque 1988

[4] Deligne, P., Rapoport, M. Correction to: “Les schémas de modules de courbes elliptiques” (Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pp. 143–316, Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973) 1975

[5] Grothendieck, Alexander Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses 1968 46 66

[6] Grothendieck, Alexander Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses 1968 46 66

[7] Langlands, Robert P. Base change for 𝐺𝐿(2) 1980

[8] Mumford, David Tata lectures on theta. II 1984

[9] Rubin, K., Silverberg, A. Families of elliptic curves with constant mod 𝑝 representations 1995 148 161

[10] Serre, Jean-Pierre Œuvres. Vol. I 1986

[11] Serre, Jean-Pierre Sur les représentations modulaires de degré 2 de 𝐺𝑎𝑙(\overline{𝐐}/𝐐) Duke Math. J. 1987 179 230

[12] Tunnell, Jerrold Artin’s conjecture for representations of octahedral type Bull. Amer. Math. Soc. (N.S.) 1981 173 175

[13] Taylor, Richard, Wiles, Andrew Ring-theoretic properties of certain Hecke algebras Ann. of Math. (2) 1995 553 572

[14] Van Der Geer, Gerard Hilbert modular surfaces 1988

[15] Wiles, Andrew Modular elliptic curves and Fermat’s last theorem Ann. of Math. (2) 1995 443 551

Cité par Sources :