Voir la notice de l'article provenant de la source American Mathematical Society
Borwein, Peter 1 ; Erdélyi, Tamás 2
@article{10_1090_S0894_0347_97_00225_7,
author = {Borwein, Peter and Erd\~A{\textcopyright}lyi, Tam\~A{\textexclamdown}s},
title = {Generalizations of {M\~A{\textonequarter}ntz\^as} {Theorem} via a {Remez-type} inequality for {M\~A{\textonequarter}ntz} spaces},
journal = {Journal of the American Mathematical Society},
pages = {327--349},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {1997},
doi = {10.1090/S0894-0347-97-00225-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00225-7/}
}
TY - JOUR AU - Borwein, Peter AU - Erdélyi, Tamás TI - Generalizations of Müntzâs Theorem via a Remez-type inequality for Müntz spaces JO - Journal of the American Mathematical Society PY - 1997 SP - 327 EP - 349 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00225-7/ DO - 10.1090/S0894-0347-97-00225-7 ID - 10_1090_S0894_0347_97_00225_7 ER -
%0 Journal Article %A Borwein, Peter %A Erdélyi, Tamás %T Generalizations of Müntzâs Theorem via a Remez-type inequality for Müntz spaces %J Journal of the American Mathematical Society %D 1997 %P 327-349 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00225-7/ %R 10.1090/S0894-0347-97-00225-7 %F 10_1090_S0894_0347_97_00225_7
Borwein, Peter; Erdélyi, Tamás. Generalizations of Müntzâs Theorem via a Remez-type inequality for Müntz spaces. Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 327-349. doi: 10.1090/S0894-0347-97-00225-7
[1] Müntz-Szasz type approximation and the angular growth of lacunary integral functions Trans. Amer. Math. Soc. 1972 237 248
[2] , Rational combinations of ð¥^{ðð}, ð_{ð}â¥0 are always dense in ð¶[0,1] J. Approximation Theory 1978 155 157
[3] Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287
[4] On Frobeniusean algebras. I Ann. of Math. (2) 1939 611 633
[5] Zeros of Chebyshev polynomials in Markov systems J. Approx. Theory 1990 56 64
[6] Variations on Müntzâs theme Canad. Math. Bull. 1991 305 310
[7] , Notes on lacunary Müntz polynomials Israel J. Math. 1991 183 192
[8] , Lacunary Müntz systems Proc. Edinburgh Math. Soc. (2) 1993 361 374
[9] , , Müntz systems and orthogonal Müntz-Legendre polynomials Trans. Amer. Math. Soc. 1994 523 542
[10] On skew-groups Proc. London Math. Soc. 1939 357 368
[11] Upper limits to the real roots of a real algebraic equation Amer. Math. Monthly 1939 334 338
[12] Remez-type inequalities on the size of generalized polynomials J. London Math. Soc. (2) 1992 255 264
[13] Remez-type inequalities and their applications J. Comput. Appl. Math. 1993 167 209
[14] , Tchebycheff systems: With applications in analysis and statistics 1966
[15] , Entire functions and Müntz-Szász type approximation Trans. Amer. Math. Soc. 1971 23 37
[16] Derivative bounds for Müntz polynomials J. Approximation Theory 1976 360 362
[17] Approximation with rational functions 1979
[18] Approximation by spline functions 1989
[19] Chebyshev polynomials 1990
[20] Ãtude des sommes dâexponentielles. 2ième éd 1959 151
[21] An improvement theorem for Descartes systems Proc. Amer. Math. Soc. 1978 26 30
[22] A Müntz-type problem for rational approximation Acta Math. Acad. Sci. Hungar. 1976 197 199
[23] Some properties of Legendre quasipolynomials with respect to a Müntz system 1984 179 189
[24] A short proof of Müntzâs theorem J. Approx. Theory 1983 394 395
Cité par Sources :