Generalizations of Müntz’s Theorem via a Remez-type inequality for Müntz spaces
Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 327-349

Voir la notice de l'article provenant de la source American Mathematical Society

The principal result of this paper is a Remez-type inequality for Müntz polynomials: \begin{equation*}p(x) := \sum ^{n}_{i=0} a_{i} x^{\lambda _{i}}, \end{equation*} or equivalently for Dirichlet sums: \begin{equation*}P(t) := \sum ^{n}_{i=0}{a_{i} e^{-\lambda _{i} t}} ,\end{equation*} where $0 = \lambda _{0} \lambda _{1} \lambda _{2} \cdots$. The most useful form of this inequality states that for every sequence $(\lambda _{i})^{\infty }_{i=0}$ satisfying $\sum ^{\infty }_{i=1} 1/\lambda _{i} \infty$, there is a constant $c$ depending only on $\Lambda : = (\lambda _{i})^{\infty }_{i=0}$ and $s$ (and not on $n$, $\varrho$, or $A$) so that \begin{equation*}\|p\|_{[0, \varrho ]} \leq c \|p\|_{A}\end{equation*} for every Müntz polynomial $p$, as above, associated with $(\lambda _{i})^{\infty }_{i=0}$, and for every set $A \subset [\varrho ,1]$ of Lebesgue measure at least $s > 0$. Here $\|\cdot \|_{A}$ denotes the supremum norm on $A$. This Remez-type inequality allows us to resolve two reasonably long-standing conjectures. The first conjecture it lets us resolve is due to D. J. Newman and dates from 1978. It asserts that if $\sum ^{\infty }_{i=1} 1/\lambda _{i} \infty$, then the set of products $\{ p_{1} p_{2} : p_{1}, p_{2} \in \text {span} \{x^{\lambda _{0}}, x^{\lambda _{1}}, \ldots \}\}$ is not dense in $C[0,1]$. The second is a complete extension of Müntz’s classical theorem on the denseness of Müntz spaces in $C[0,1]$ to denseness in $C(A)$, where $A \subset [0,\infty )$ is an arbitrary compact set with positive Lebesgue measure. That is, for an arbitrary compact set $A \subset [0,\infty )$ with positive Lebesgue measure, $\text {span} \{ x^{\lambda _{0}}, x^{\lambda _{1}}, \ldots \}$ is dense in $C(A)$ if and only if $\sum ^{\infty }_{i=1} 1/\lambda _{i} =\infty$. Several other interesting consequences are also presented.
DOI : 10.1090/S0894-0347-97-00225-7

Borwein, Peter 1 ; Erdélyi, Tamás 2

1 Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
2 Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
@article{10_1090_S0894_0347_97_00225_7,
     author = {Borwein, Peter and Erd\~A{\textcopyright}lyi, Tam\~A{\textexclamdown}s},
     title = {Generalizations of {M\~A{\textonequarter}ntz\^a€™s} {Theorem} via a {Remez-type} inequality for {M\~A{\textonequarter}ntz} spaces},
     journal = {Journal of the American Mathematical Society},
     pages = {327--349},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1997},
     doi = {10.1090/S0894-0347-97-00225-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00225-7/}
}
TY  - JOUR
AU  - Borwein, Peter
AU  - Erdélyi, Tamás
TI  - Generalizations of Müntz’s Theorem via a Remez-type inequality for Müntz spaces
JO  - Journal of the American Mathematical Society
PY  - 1997
SP  - 327
EP  - 349
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00225-7/
DO  - 10.1090/S0894-0347-97-00225-7
ID  - 10_1090_S0894_0347_97_00225_7
ER  - 
%0 Journal Article
%A Borwein, Peter
%A Erdélyi, Tamás
%T Generalizations of Müntz’s Theorem via a Remez-type inequality for Müntz spaces
%J Journal of the American Mathematical Society
%D 1997
%P 327-349
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-97-00225-7/
%R 10.1090/S0894-0347-97-00225-7
%F 10_1090_S0894_0347_97_00225_7
Borwein, Peter; Erdélyi, Tamás. Generalizations of Müntz’s Theorem via a Remez-type inequality for Müntz spaces. Journal of the American Mathematical Society, Tome 10 (1997) no. 2, pp. 327-349. doi: 10.1090/S0894-0347-97-00225-7

[1] Anderson, J. M. Müntz-Szasz type approximation and the angular growth of lacunary integral functions Trans. Amer. Math. Soc. 1972 237 248

[2] Bak, Joseph, Newman, Donald J. Rational combinations of 𝑥^{𝜆𝑘}, 𝜆_{𝑘}≥0 are always dense in 𝐶[0,1] J. Approximation Theory 1978 155 157

[3] Hebroni, P. Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287

[4] Nakayama, Tadasi On Frobeniusean algebras. I Ann. of Math. (2) 1939 611 633

[5] Borwein, Peter Zeros of Chebyshev polynomials in Markov systems J. Approx. Theory 1990 56 64

[6] Borwein, Peter B. Variations on Müntz’s theme Canad. Math. Bull. 1991 305 310

[7] Borwein, Peter, Erdã©Lyi, Tamã¡S Notes on lacunary Müntz polynomials Israel J. Math. 1991 183 192

[8] Borwein, Peter, Erdã©Lyi, Tamã¡S Lacunary Müntz systems Proc. Edinburgh Math. Soc. (2) 1993 361 374

[9] Borwein, Peter, Erdã©Lyi, Tamã¡S, Zhang, John Müntz systems and orthogonal Müntz-Legendre polynomials Trans. Amer. Math. Soc. 1994 523 542

[10] Hirsch, K. A. On skew-groups Proc. London Math. Soc. 1939 357 368

[11] Corliss, J. J. Upper limits to the real roots of a real algebraic equation Amer. Math. Monthly 1939 334 338

[12] Erdã©Lyi, Tamã¡S Remez-type inequalities on the size of generalized polynomials J. London Math. Soc. (2) 1992 255 264

[13] Erdã©Lyi, Tamã¡S Remez-type inequalities and their applications J. Comput. Appl. Math. 1993 167 209

[14] Karlin, Samuel, Studden, William J. Tchebycheff systems: With applications in analysis and statistics 1966

[15] Luxemburg, W. A. J., Korevaar, J. Entire functions and Müntz-Szász type approximation Trans. Amer. Math. Soc. 1971 23 37

[16] Newman, D. J. Derivative bounds for Müntz polynomials J. Approximation Theory 1976 360 362

[17] Newman, Donald J. Approximation with rational functions 1979

[18] Nã¼Rnberger, Gã¼Nther Approximation by spline functions 1989

[19] Rivlin, Theodore J. Chebyshev polynomials 1990

[20] Schwartz, Laurent Étude des sommes d’exponentielles. 2ième éd 1959 151

[21] Smith, Philip W. An improvement theorem for Descartes systems Proc. Amer. Math. Soc. 1978 26 30

[22] Somorjai, G. A Müntz-type problem for rational approximation Acta Math. Acad. Sci. Hungar. 1976 197 199

[23] Taslakyan, A. K. Some properties of Legendre quasipolynomials with respect to a Müntz system 1984 179 189

[24] Von Golitschek, M. A short proof of Müntz’s theorem J. Approx. Theory 1983 394 395

Cité par Sources :