Voir la notice de l'article provenant de la source American Mathematical Society
Kenyon, Richard 1 ; Wilson, David 2
@article{10_1090_S0894_0347_2014_00819_5,
author = {Kenyon, Richard and Wilson, David},
title = {Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on planar graphs},
journal = {Journal of the American Mathematical Society},
pages = {985--1030},
publisher = {mathdoc},
volume = {28},
number = {4},
year = {2015},
doi = {10.1090/S0894-0347-2014-00819-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00819-5/}
}
TY - JOUR AU - Kenyon, Richard AU - Wilson, David TI - Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on planar graphs JO - Journal of the American Mathematical Society PY - 2015 SP - 985 EP - 1030 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00819-5/ DO - 10.1090/S0894-0347-2014-00819-5 ID - 10_1090_S0894_0347_2014_00819_5 ER -
%0 Journal Article %A Kenyon, Richard %A Wilson, David %T Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on planar graphs %J Journal of the American Mathematical Society %D 2015 %P 985-1030 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00819-5/ %R 10.1090/S0894-0347-2014-00819-5 %F 10_1090_S0894_0347_2014_00819_5
Kenyon, Richard; Wilson, David. Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on planar graphs. Journal of the American Mathematical Society, Tome 28 (2015) no. 4, pp. 985-1030. doi: 10.1090/S0894-0347-2014-00819-5
[1] , , , Uniform spanning forests Ann. Probab. 2001 1 65
[2] , , Self-organized criticality Phys. Rev. A (3) 1988 364 374
[3] Approximation of conformal mappings by circle patterns Geom. Dedicata 2008 163 197
[4] Réseaux électriques planaires. I Comment. Math. Helv. 1994 351 374
[5] , , Réseaux électriques planaires. II Comment. Math. Helv. 1996 144 167
[6] , , Circular planar graphs and resistor networks Linear Algebra Appl. 1998 115 150
[7] , The cube recurrence Electron. J. Combin. 2004
[8] , A problem of arrangements Duke Math. J. 1947 305 313
[9] Correlations between eigenvalues of a random matrix Comm. Math. Phys. 1970 235 250
[10] , The cycle lemma and some applications European J. Combin. 1990 35 40
[11] , Moduli spaces of local systems and higher Teichmüller theory Publ. Math. Inst. Hautes Ãtudes Sci. 2006 1 211
[12] Loop-erased walks and total positivity Trans. Amer. Math. Soc. 2001 3563 3583
[13] Determinants of Laplacians on graphs Topology 1993 35 46
[14] , Potential kernel for two-dimensional random walk Ann. Probab. 1996 1979 1992
[15] The asymptotic determinant of the discrete Laplacian Acta Math. 2000 239 286
[16] Long-range properties of spanning trees J. Math. Phys. 2000 1338 1363
[17] The Laplacian and Dirac operators on critical planar graphs Invent. Math. 2002 409 439
[18] Spanning forests and the vector bundle Laplacian Ann. Probab. 2011 1983 2017
[19] Proofs of two conjectures of Kenyon and Wilson on Dyck tilings J. Combin. Theory Ser. A 2012 1692 1710
[20] , , , Dyck tilings, increasing trees, descents, and inversions J. Combin. Theory Ser. A 2014 9 27
[21] , An asymptotic expansion for the discrete harmonic potential Electron. J. Probab. 2004
[22] , Boundary partitions in trees and dimers Trans. Amer. Math. Soc. 2011 1325 1364
[23] , Double-dimer pairings and skew Young diagrams Electron. J. Combin. 2011
[24] Intersections of random walks 1991 219
[25] Loop-erased random walk 1999 197 217
[26] , Random walk: a modern introduction 2010
[27] , Inverse problem in cylindrical electrical networks SIAM J. Appl. Math. 2012 767 788
[28] , The looping constant of â¤^{ð} Random Structures Algorithms 2014 1 13
[29] , , Conformal invariance of planar loop-erased random walks and uniform spanning trees Ann. Probab. 2004 939 995
[30] Choosing a spanning tree for the integer lattice uniformly Ann. Probab. 1991 1559 1574
[31] Principles of random walk 1976
[32] Enumerative combinatorics. Vol. 2 1999
[33] Ãber einige lineare partielle Differenzengleichungen mit konstanten Koeffizienten. III. Zweites Beispiel: Der Operator âΦ(ð¦â,ð¦â) Math. Nachr. 1950 330 357
[34] , Path representation of maximal parabolic Kazhdan-Lusztig polynomials J. Pure Appl. Algebra 2012 2533 2548
[35] Generating random spanning trees more quickly than the cover time 1996 296 303
Cité par Sources :