Conservation relations for local theta correspondence
Journal of the American Mathematical Society, Tome 28 (2015) no. 4, pp. 939-983

Voir la notice de l'article provenant de la source American Mathematical Society

We prove Kudla-Rallis conjecture on first occurrences of local theta correspondence, for all irreducible dual pairs of type I and all local fields of characteristic zero.
DOI : 10.1090/S0894-0347-2014-00817-1

Sun, Binyong 1 ; Zhu, Chen-Bo 2

1 Hua Loo-Keng Key Laboratory of Mathematics, Institute of Mathematics, AMSS, Chinese Academy of Sciences, Beijing, 100190, P.R. China
2 Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076
@article{10_1090_S0894_0347_2014_00817_1,
     author = {Sun, Binyong and Zhu, Chen-Bo},
     title = {Conservation relations for local theta correspondence},
     journal = {Journal of the American Mathematical Society},
     pages = {939--983},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00817-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00817-1/}
}
TY  - JOUR
AU  - Sun, Binyong
AU  - Zhu, Chen-Bo
TI  - Conservation relations for local theta correspondence
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 939
EP  - 983
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00817-1/
DO  - 10.1090/S0894-0347-2014-00817-1
ID  - 10_1090_S0894_0347_2014_00817_1
ER  - 
%0 Journal Article
%A Sun, Binyong
%A Zhu, Chen-Bo
%T Conservation relations for local theta correspondence
%J Journal of the American Mathematical Society
%D 2015
%P 939-983
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00817-1/
%R 10.1090/S0894-0347-2014-00817-1
%F 10_1090_S0894_0347_2014_00817_1
Sun, Binyong; Zhu, Chen-Bo. Conservation relations for local theta correspondence. Journal of the American Mathematical Society, Tome 28 (2015) no. 4, pp. 939-983. doi: 10.1090/S0894-0347-2014-00817-1

[1] Adams, Jeffrey, Barbasch, Dan Reductive dual pair correspondence for complex groups J. Funct. Anal. 1995 1 42

[2] Bernå¡Teä­N, I. N., Zelevinskiä­, A. V. Representations of the group 𝐺𝐿(𝑛,𝐹), where 𝐹 is a local non-Archimedean field Uspehi Mat. Nauk 1976 5 70

[3] Casselman, W. Canonical extensions of Harish-Chandra modules to representations of 𝐺 Canad. J. Math. 1989 385 438

[4] Cartier, Pierre Quantum mechanical commutation relations and theta functions 1966 361 383

[5] Dieudonnã©, Jean Sur les groupes classiques 1948

[6] Dieudonnã©, Jean On the structure of unitary groups. II Amer. J. Math. 1953 665 678

[7] Du Cloux, Fokko Sur les représentations différentiables des groupes de Lie algébriques Ann. Sci. École Norm. Sup. (4) 1991 257 318

[8] Du Cloux, F. Représentations tempérées des groupes de Lie nilpotents J. Funct. Anal. 1989 420 457

[9] Gan, Wee Teck, Gross, Benedict H., Prasad, Dipendra Symplectic local root numbers, central critical 𝐿-values, and restriction problems in the representation theory of classical groups Astérisque 2012

[10] Gan, Wee Teck, Ichino, Atsushi Formal degrees and local theta correspondence Invent. Math. 2014 509 672

[11] Gan, Wee Teck, Tantono, Welly The local Langlands conjecture for 𝐺𝑆𝑝(4) II: the case of inner forms Amer. J. Math. 2014

[12] Gong, Z., Greniã©, L. An inequality for local unitary theta correspondence Ann. Fac. Sci. Toulouse Math. (6) 2011 167 202

[13] Harris, Michael Cohomological automorphic forms on unitary groups. II. Period relations and values of 𝐿-functions 2007 89 149

[14] Harris, Michael, Kudla, Stephen S., Sweet, William J. Theta dichotomy for unitary groups J. Amer. Math. Soc. 1996 941 1004

[15] Howe, R. 𝜃-series and invariant theory 1979 275 285

[16] Howe, Roger The oscillator representation: algebraic and analytic preliminaries

[17] Howe, Roger Transcending classical invariant theory J. Amer. Math. Soc. 1989 535 552

[18] Kudla, Stephen S. On the local theta-correspondence Invent. Math. 1986 229 255

[19] Kudla, Stephen S. Splitting metaplectic covers of dual reductive pairs Israel J. Math. 1994 361 401

[20] Kudla, Stephen S. Notes on the local theta correspondence, Lecture notes from the European School of Group Theory 1996

[21] Kudla, Stephen S., Rallis, Stephen Degenerate principal series and invariant distributions Israel J. Math. 1990 25 45

[22] Kudla, Stephen S., Rallis, Stephen Ramified degenerate principal series representations for 𝑆𝑝(𝑛) Israel J. Math. 1992 209 256

[23] Kudla, Stephen S., Rallis, Stephen On first occurrence in the local theta correspondence 2005 273 308

[24] Kudla, Stephen S., Sweet, W. Jay, Jr. Degenerate principal series representations for 𝑈(𝑛,𝑛) Israel J. Math. 1997 253 306

[25] Li, Jian-Shu Singular unitary representations of classical groups Invent. Math. 1989 237 255

[26] Li, Jian-Shu Minimal representations & reductive dual pairs 2000 293 340

[27] Lin, Yanan, Sun, Binyong, Tan, Shaobin MVW-extensions of quaternionic classical groups Math. Z. 2014 81 89

[28] Loke, Hung Yean Howe quotients of unitary characters and unitary lowest weight modules Represent. Theory 2006 21 47

[29] Lapid, Erez M., Rallis, Stephen On the local factors of representations of classical groups 2005 309 359

[30] Lee, Soo Teck, Zhu, Chen-Bo Degenerate principal series and local theta correspondence Trans. Amer. Math. Soc. 1998 5017 5046

[31] Lee, Soo Teck, Zhu, Chen-Bo Degenerate principal series and local theta correspondence. II Israel J. Math. 1997 29 59

[32] Lee, Soo Teck, Zhu, Chen-Bo Degenerate principal series and local theta correspondence. III. The case of complex groups J. Algebra 2008 336 359

[33] Lee, Soo Teck, Zhu, Chen-Bo Degenerate principal series of metaplectic groups and Howe correspondence 2013 379 408

[34] Li, Jian-Shu, Paul, Annegret, Tan, Eng-Chye, Zhu, Chen-Bo The explicit duality correspondence of (𝑆𝑝(𝑝,𝑞),𝑂*(2𝑛)) J. Funct. Anal. 2003 71 100

[35] Loomis, Lynn H. An introduction to abstract harmonic analysis 1953

[36] Mã­Nguez, Alberto The conservation relation for cuspidal representations Math. Ann. 2012 179 188

[37] Må“Glin, Colette, Vignã©Ras, Marie-France, Waldspurger, Jean-Loup Correspondances de Howe sur un corps 𝑝-adique 1987

[38] O’Meara, C.T. Introduction to Quadratic Forms 1973

[39] Paul, Annegret First occurrence for the dual pairs (𝑈(𝑝,𝑞),𝑈(𝑟,𝑠)) Canad. J. Math. 1999 636 657

[40] Prasad, Dipendra On the local Howe duality correspondence Internat. Math. Res. Notices 1993 279 287

[41] Protsak, V., Przebinda, T. On the occurrence of admissible representations in the real Howe correspondence in stable range Manuscripta Math. 2008 135 141

[42] Przebinda, Tomasz On Howe’s duality theorem J. Funct. Anal. 1988 160 183

[43] Przebinda, Tomasz The oscillator duality correspondence for the pair 𝑂(2,2),𝑆𝑝(2,𝑅) Mem. Amer. Math. Soc. 1989

[44] Piatetski-Shapiro, I., Rallis, S. 𝜀 factor of representations of classical groups Proc. Nat. Acad. Sci. U.S.A. 1986 4589 4593

[45] Rallis, S. On the Howe duality conjecture Compositio Math. 1984 333 399

[46] Rallis, Steve Complement to the appendix of: “On the Howe duality conjecture” [MR0743016] Represent. Theory 2013 176 179

[47] Ranga Rao, R. On some explicit formulas in the theory of Weil representation Pacific J. Math. 1993 335 371

[48] Riehm, Carl The congruence subgroup problem over local fields Amer. J. Math. 1970 771 778

[49] Scharlau, Winfried Quadratic and Hermitian forms 1985

[50] Schneider, Peter 𝑝-adic Lie groups 2011

[51] Sun, Binyong Dual pairs and contragredients of irreducible representations Pacific J. Math. 2011 485 494

[52] Sun, Binyong Almost linear Nash groups 2013

[53] Sun, Binyong On representations of real Jacobi groups Sci. China Math. 2012 541 555

[54] Waldspurger, J.-L. Démonstration d’une conjecture de dualité de Howe dans le cas 𝑝-adique, 𝑝≠2 1990 267 324

[55] Wall, C. T. C. On the classification of Hermitian forms. II. Semisimple rings Invent. Math. 1972 119 141

[56] Wallach, Nolan R. Real reductive groups. I 1988

[57] Wallach, Nolan R. Real reductive groups. II 1992

[58] Weil, Andr㩠Sur certains groupes d’opérateurs unitaires Acta Math. 1964 143 211

[59] Weissauer, Rainer The Witt group of quadratic characters Math. Scand. 1986 71 92

[60] Yamana, Shunsuke Degenerate principal series representations for quaternionic unitary groups Israel J. Math. 2011 77 124

[61] Zorn, Christian Theta dichotomy and doubling epsilon factors for ̃𝑆𝑝_{𝑛}(𝐹) Amer. J. Math. 2011 1313 1364

Cité par Sources :