Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_2014_00815_8,
author = {Halpern-Leistner, Daniel},
title = {The derived category of a {GIT} quotient},
journal = {Journal of the American Mathematical Society},
pages = {871--912},
publisher = {mathdoc},
volume = {28},
number = {3},
year = {2015},
doi = {10.1090/S0894-0347-2014-00815-8},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00815-8/}
}
TY - JOUR AU - Halpern-Leistner, Daniel TI - The derived category of a GIT quotient JO - Journal of the American Mathematical Society PY - 2015 SP - 871 EP - 912 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00815-8/ DO - 10.1090/S0894-0347-2014-00815-8 ID - 10_1090_S0894_0347_2014_00815_8 ER -
%0 Journal Article %A Halpern-Leistner, Daniel %T The derived category of a GIT quotient %J Journal of the American Mathematical Society %D 2015 %P 871-912 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00815-8/ %R 10.1090/S0894-0347-2014-00815-8 %F 10_1090_S0894_0347_2014_00815_8
Halpern-Leistner, Daniel. The derived category of a GIT quotient. Journal of the American Mathematical Society, Tome 28 (2015) no. 3, pp. 871-912. doi: 10.1090/S0894-0347-2014-00815-8
[1] , Baric structures on triangulated categories and coherent sheaves Int. Math. Res. Not. IMRN 2011 3688 3743
[2] , Perverse coherent sheaves Mosc. Math. J. 2010
[3] , Noncommutative projective schemes Adv. Math. 1994 228 287
[4] , , Integral transforms and Drinfeld centers in derived algebraic geometry J. Amer. Math. Soc. 2010 909 966
[5] , Derived categories of coherent sheaves 2002 47 56
[6] On motivic decompositions arising from the method of BiaÅynicki-Birula Invent. Math. 2005 91 111
[7] , , Coherent sheaves and categorical ð°ð©â actions Duke Math. J. 2010 135 179
[8] , Variation of geometric invariant theory quotients Inst. Hautes Ãtudes Sci. Publ. Math. 1998 5 56
[9] , Window shifts, flop equivalences and Grassmannian twists Compos. Math. 2014 942 978
[10] Grassmannian twists on the derived category via spherical functors Proc. Lond. Math. Soc. (3) 2013 1053 1090
[11] , Surjectivity for Hamiltonian ðº-spaces in ð¾-theory Trans. Amer. Math. Soc. 2007 6001 6025
[12] , , B-type D-branes in toric Calabi-Yau varieties 2009 27 44
[13] Derived category of coherent sheaves on Grassmann manifolds Izv. Akad. Nauk SSSR Ser. Mat. 1984 192 202
[14] Derived categories of toric varieties Michigan Math. J. 2006 517 535
[15] Cohomology of quotients in symplectic and algebraic geometry 1984
[16] Differential graded Lie algebras and formal deformation theory 2009 785 810
[17] Derived categories of coherent sheaves, and motives Uspekhi Mat. Nauk 2005 231 232
[18] Derived categories of coherent sheaves and triangulated categories of singularities 2009 503 531
[19] Matrix factorizations for nonaffine LG-models Math. Ann. 2012 95 108
[20] Dimensions of triangulated categories J. K-Theory 2008 193 256
[21] Equivalence between GIT quotients of Landau-Ginzburg B-models Comm. Math. Phys. 2011 411 432
[22] A geometric approach to Orlovâs theorem Compos. Math. 2012 1365 1389
[23] The quantization conjecture revisited Ann. of Math. (2) 2000 1 43
[24] Geometric invariant theory and flips J. Amer. Math. Soc. 1996 691 723
Cité par Sources :