The derived category of a GIT quotient
Journal of the American Mathematical Society, Tome 28 (2015) no. 3, pp. 871-912

Voir la notice de l'article provenant de la source American Mathematical Society

Given a quasiprojective algebraic variety with a reductive group action, we describe a relationship between its equivariant derived category and the derived category of its geometric invariant theory quotient. This generalizes classical descriptions of the category of coherent sheaves on projective space and categorifies several results in the theory of Hamiltonian group actions on projective manifolds. This perspective generalizes and provides new insight into examples of derived equivalences between birational varieties. We provide a criterion under which two different GIT quotients are derived equivalent, and apply it to prove that any two generic GIT quotients of an equivariantly Calabi-Yau projective-over-affine manifold by a torus are derived equivalent.
DOI : 10.1090/S0894-0347-2014-00815-8

Halpern-Leistner, Daniel 1

1 School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
@article{10_1090_S0894_0347_2014_00815_8,
     author = {Halpern-Leistner, Daniel},
     title = {The derived category of a {GIT} quotient},
     journal = {Journal of the American Mathematical Society},
     pages = {871--912},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00815-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00815-8/}
}
TY  - JOUR
AU  - Halpern-Leistner, Daniel
TI  - The derived category of a GIT quotient
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 871
EP  - 912
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00815-8/
DO  - 10.1090/S0894-0347-2014-00815-8
ID  - 10_1090_S0894_0347_2014_00815_8
ER  - 
%0 Journal Article
%A Halpern-Leistner, Daniel
%T The derived category of a GIT quotient
%J Journal of the American Mathematical Society
%D 2015
%P 871-912
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00815-8/
%R 10.1090/S0894-0347-2014-00815-8
%F 10_1090_S0894_0347_2014_00815_8
Halpern-Leistner, Daniel. The derived category of a GIT quotient. Journal of the American Mathematical Society, Tome 28 (2015) no. 3, pp. 871-912. doi: 10.1090/S0894-0347-2014-00815-8

[1] Achar, Pramod N., Treumann, David Baric structures on triangulated categories and coherent sheaves Int. Math. Res. Not. IMRN 2011 3688 3743

[2] Arinkin, Dmitry, Bezrukavnikov, Roman Perverse coherent sheaves Mosc. Math. J. 2010

[3] Artin, M., Zhang, J. J. Noncommutative projective schemes Adv. Math. 1994 228 287

[4] Ben-Zvi, David, Francis, John, Nadler, David Integral transforms and Drinfeld centers in derived algebraic geometry J. Amer. Math. Soc. 2010 909 966

[5] Bondal, A., Orlov, D. Derived categories of coherent sheaves 2002 47 56

[6] Brosnan, Patrick On motivic decompositions arising from the method of Białynicki-Birula Invent. Math. 2005 91 111

[7] Cautis, Sabin, Kamnitzer, Joel, Licata, Anthony Coherent sheaves and categorical 𝔰𝔩₂ actions Duke Math. J. 2010 135 179

[8] Dolgachev, Igor V., Hu, Yi Variation of geometric invariant theory quotients Inst. Hautes Études Sci. Publ. Math. 1998 5 56

[9] Donovan, Will, Segal, Ed Window shifts, flop equivalences and Grassmannian twists Compos. Math. 2014 942 978

[10] Donovan, Will Grassmannian twists on the derived category via spherical functors Proc. Lond. Math. Soc. (3) 2013 1053 1090

[11] Harada, Megumi, Landweber, Gregory D. Surjectivity for Hamiltonian 𝐺-spaces in 𝐾-theory Trans. Amer. Math. Soc. 2007 6001 6025

[12] Herbst, M., Hori, K., Page, D. B-type D-branes in toric Calabi-Yau varieties 2009 27 44

[13] Kapranov, M. M. Derived category of coherent sheaves on Grassmann manifolds Izv. Akad. Nauk SSSR Ser. Mat. 1984 192 202

[14] Kawamata, Yujiro Derived categories of toric varieties Michigan Math. J. 2006 517 535

[15] Kirwan, Frances Clare Cohomology of quotients in symplectic and algebraic geometry 1984

[16] Manetti, Marco Differential graded Lie algebras and formal deformation theory 2009 785 810

[17] Orlov, D. O. Derived categories of coherent sheaves, and motives Uspekhi Mat. Nauk 2005 231 232

[18] Orlov, Dmitri Derived categories of coherent sheaves and triangulated categories of singularities 2009 503 531

[19] Orlov, Dmitri Matrix factorizations for nonaffine LG-models Math. Ann. 2012 95 108

[20] Rouquier, Raphaã«L Dimensions of triangulated categories J. K-Theory 2008 193 256

[21] Segal, Ed Equivalence between GIT quotients of Landau-Ginzburg B-models Comm. Math. Phys. 2011 411 432

[22] Shipman, Ian A geometric approach to Orlov’s theorem Compos. Math. 2012 1365 1389

[23] Teleman, Constantin The quantization conjecture revisited Ann. of Math. (2) 2000 1 43

[24] Thaddeus, Michael Geometric invariant theory and flips J. Amer. Math. Soc. 1996 691 723

Cité par Sources :