Well-posedness of the Prandtl equation in Sobolev spaces
Journal of the American Mathematical Society, Tome 28 (2015) no. 3, pp. 745-784

Voir la notice de l'article provenant de la source American Mathematical Society

We develop a new approach to study the well-posedness theory of the Prandtl equation in Sobolev spaces by using a direct energy method under a monotonicity condition on the tangential velocity field instead of using the Crocco transformation. Precisely, we firstly investigate the linearized Prandtl equation in some weighted Sobolev spaces when the tangential velocity of the background state is monotonic in the normal variable. Then to cope with the loss of regularity of the perturbation with respect to the background state due to the degeneracy of the equation, we apply the Nash-Moser-Hörmander iteration to obtain a well-posedness theory of classical solutions to the nonlinear Prandtl equation when the initial data is a small perturbation of a monotonic shear flow.
DOI : 10.1090/S0894-0347-2014-00813-4

Alexandre, R. 1 ; Wang, Y.-G. 2 ; Xu, C.-J. 3 ; Yang, T. 4

1 Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China and Arts et Métiers ParisTech, Paris 75013, France
2 Department of Mathematics, and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
3 School of Mathematics, Wuhan University 430072, Wuhan, P. R. China, and Université de Rouen, UMR 6085-CNRS, Mathématiques, Avenue de l’Université, BP.12, 76801 Saint Etienne du Rouvray, France
4 Department of Mathematics, City University of Hong Kong, Hong Kong, P. R. China
@article{10_1090_S0894_0347_2014_00813_4,
     author = {Alexandre, R. and Wang, Y.-G. and Xu, C.-J. and Yang, T.},
     title = {Well-posedness of the {Prandtl} equation in {Sobolev} spaces},
     journal = {Journal of the American Mathematical Society},
     pages = {745--784},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00813-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00813-4/}
}
TY  - JOUR
AU  - Alexandre, R.
AU  - Wang, Y.-G.
AU  - Xu, C.-J.
AU  - Yang, T.
TI  - Well-posedness of the Prandtl equation in Sobolev spaces
JO  - Journal of the American Mathematical Society
PY  - 2015
SP  - 745
EP  - 784
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00813-4/
DO  - 10.1090/S0894-0347-2014-00813-4
ID  - 10_1090_S0894_0347_2014_00813_4
ER  - 
%0 Journal Article
%A Alexandre, R.
%A Wang, Y.-G.
%A Xu, C.-J.
%A Yang, T.
%T Well-posedness of the Prandtl equation in Sobolev spaces
%J Journal of the American Mathematical Society
%D 2015
%P 745-784
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00813-4/
%R 10.1090/S0894-0347-2014-00813-4
%F 10_1090_S0894_0347_2014_00813_4
Alexandre, R.; Wang, Y.-G.; Xu, C.-J.; Yang, T. Well-posedness of the Prandtl equation in Sobolev spaces. Journal of the American Mathematical Society, Tome 28 (2015) no. 3, pp. 745-784. doi: 10.1090/S0894-0347-2014-00813-4

[1] Alinhac, Serge, Gã©Rard, Patrick Pseudo-differential operators and the Nash-Moser theorem 2007

[2] Caflisch, R. E., Sammartino, M. Existence and singularities for the Prandtl boundary layer equations ZAMM Z. Angew. Math. Mech. 2000 733 744

[3] Chazarain, Jacques, Piriou, Alain Introduction to the theory of linear partial differential equations 1982

[4] E, Weinan Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation Acta Math. Sin. (Engl. Ser.) 2000 207 218

[5] E, Weinan, Engquist, Bjorn Blowup of solutions of the unsteady Prandtl’s equation Comm. Pure Appl. Math. 1997 1287 1293

[6] Gã©Rard-Varet, David, Dormy, Emmanuel On the ill-posedness of the Prandtl equation J. Amer. Math. Soc. 2010 591 609

[7] Gã©Rard-Varet, D., Nguyen, T. Remarks on the ill-posedness of the Prandtl equation Asymptot. Anal. 2012 71 88

[8] Grenier, Emmanuel On the nonlinear instability of Euler and Prandtl equations Comm. Pure Appl. Math. 2000 1067 1091

[9] Guo, Yan, Nguyen, Toan A note on Prandtl boundary layers Comm. Pure Appl. Math. 2011 1416 1438

[10] Hamilton, Richard S. The inverse function theorem of Nash and Moser Bull. Amer. Math. Soc. (N.S.) 1982 65 222

[11] Hong, Lan, Hunter, John K. Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations Commun. Math. Sci. 2003 293 316

[12] Hã¶Rmander, Lars The analysis of linear partial differential operators 1985

[13] Hã¶Rmander, Lars The boundary problems of physical geodesy Arch. Rational Mech. Anal. 1976 1 52

[14] Lombardo, Maria Carmela, Cannone, Marco, Sammartino, Marco Well-posedness of the boundary layer equations SIAM J. Math. Anal. 2003 987 1004

[15] Mã©Tivier, Guy Small viscosity and boundary layer methods 2004

[16] Moser, Jã¼Rgen A new technique for the construction of solutions of nonlinear differential equations Proc. Nat. Acad. Sci. U.S.A. 1961 1824 1831

[17] Nash, John The imbedding problem for Riemannian manifolds Ann. of Math. (2) 1956 20 63

[18] Oleinik, Olga A. The Prandtl system of equations in boundary layer theory Soviet Math Dokl. 1963

[19] Oleinik, O. A., Samokhin, V. N. Mathematical models in boundary layer theory 1999

[20] Prandtl, Ludwig Über Flüssigkeitsbewegungen bei sehr kleiner Reibung. In “Verh. Int. Math. Kongr., Heidelberg 1904,” 1905

[21] Sammartino, Marco, Caflisch, Russel E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution Comm. Math. Phys. 1998 463 491

[22] Xin, Zhouping, Zhang, Liqun On the global existence of solutions to the Prandtl’s system Adv. Math. 2004 88 133

Cité par Sources :