Voir la notice de l'article provenant de la source American Mathematical Society
Alexandre, R. 1 ; Wang, Y.-G. 2 ; Xu, C.-J. 3 ; Yang, T. 4
@article{10_1090_S0894_0347_2014_00813_4,
author = {Alexandre, R. and Wang, Y.-G. and Xu, C.-J. and Yang, T.},
title = {Well-posedness of the {Prandtl} equation in {Sobolev} spaces},
journal = {Journal of the American Mathematical Society},
pages = {745--784},
publisher = {mathdoc},
volume = {28},
number = {3},
year = {2015},
doi = {10.1090/S0894-0347-2014-00813-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00813-4/}
}
TY - JOUR AU - Alexandre, R. AU - Wang, Y.-G. AU - Xu, C.-J. AU - Yang, T. TI - Well-posedness of the Prandtl equation in Sobolev spaces JO - Journal of the American Mathematical Society PY - 2015 SP - 745 EP - 784 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00813-4/ DO - 10.1090/S0894-0347-2014-00813-4 ID - 10_1090_S0894_0347_2014_00813_4 ER -
%0 Journal Article %A Alexandre, R. %A Wang, Y.-G. %A Xu, C.-J. %A Yang, T. %T Well-posedness of the Prandtl equation in Sobolev spaces %J Journal of the American Mathematical Society %D 2015 %P 745-784 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00813-4/ %R 10.1090/S0894-0347-2014-00813-4 %F 10_1090_S0894_0347_2014_00813_4
Alexandre, R.; Wang, Y.-G.; Xu, C.-J.; Yang, T. Well-posedness of the Prandtl equation in Sobolev spaces. Journal of the American Mathematical Society, Tome 28 (2015) no. 3, pp. 745-784. doi: 10.1090/S0894-0347-2014-00813-4
[1] , Pseudo-differential operators and the Nash-Moser theorem 2007
[2] , Existence and singularities for the Prandtl boundary layer equations ZAMM Z. Angew. Math. Mech. 2000 733 744
[3] , Introduction to the theory of linear partial differential equations 1982
[4] Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation Acta Math. Sin. (Engl. Ser.) 2000 207 218
[5] , Blowup of solutions of the unsteady Prandtlâs equation Comm. Pure Appl. Math. 1997 1287 1293
[6] , On the ill-posedness of the Prandtl equation J. Amer. Math. Soc. 2010 591 609
[7] , Remarks on the ill-posedness of the Prandtl equation Asymptot. Anal. 2012 71 88
[8] On the nonlinear instability of Euler and Prandtl equations Comm. Pure Appl. Math. 2000 1067 1091
[9] , A note on Prandtl boundary layers Comm. Pure Appl. Math. 2011 1416 1438
[10] The inverse function theorem of Nash and Moser Bull. Amer. Math. Soc. (N.S.) 1982 65 222
[11] , Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations Commun. Math. Sci. 2003 293 316
[12] The analysis of linear partial differential operators 1985
[13] The boundary problems of physical geodesy Arch. Rational Mech. Anal. 1976 1 52
[14] , , Well-posedness of the boundary layer equations SIAM J. Math. Anal. 2003 987 1004
[15] Small viscosity and boundary layer methods 2004
[16] A new technique for the construction of solutions of nonlinear differential equations Proc. Nat. Acad. Sci. U.S.A. 1961 1824 1831
[17] The imbedding problem for Riemannian manifolds Ann. of Math. (2) 1956 20 63
[18] The Prandtl system of equations in boundary layer theory Soviet Math Dokl. 1963
[19] , Mathematical models in boundary layer theory 1999
[20] Ãber Flüssigkeitsbewegungen bei sehr kleiner Reibung. In âVerh. Int. Math. Kongr., Heidelberg 1904,â 1905
[21] , Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution Comm. Math. Phys. 1998 463 491
[22] , On the global existence of solutions to the Prandtlâs system Adv. Math. 2004 88 133
Cité par Sources :