Parity sheaves
Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 1169-1212

Voir la notice de l'article provenant de la source American Mathematical Society

Given a stratified variety $X$ with strata satisfying a cohomological parity-vanishing condition, we define and show the uniqueness of “parity sheaves,” which are objects in the constructible derived category of sheaves with coefficients in an arbitrary field or complete discrete valuation ring. This construction depends on the choice of a parity function on the strata. If $X$ admits a resolution also satisfying a parity condition, then the direct image of the constant sheaf decomposes as a direct sum of parity sheaves, and the multiplicities of the indecomposable summands are encoded in certain refined intersection forms appearing in the work of de Cataldo and Migliorini. We give a criterion for the Decomposition Theorem to hold in the semi-small case. Our framework applies to many stratified varieties arising in representation theory such as generalised flag varieties, toric varieties, and nilpotent cones. Moreover, parity sheaves often correspond to interesting objects in representation theory. For example, on flag varieties we recover in a unified way several well-known complexes of sheaves. For one choice of parity function we obtain the indecomposable tilting perverse sheaves. For another, when using coefficients of characteristic zero, we recover the intersection cohomology sheaves and in arbitrary characteristic the special sheaves of Soergel, which are used by Fiebig in his proof of Lusztig’s conjecture.
DOI : 10.1090/S0894-0347-2014-00804-3

Juteau, Daniel 1 ; Mautner, Carl 2 ; Williamson, Geordie 2

1 LMNO, Université de Caen Basse-Normandie, CNRS, BP 5186, 14032 Caen, France
2 Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
@article{10_1090_S0894_0347_2014_00804_3,
     author = {Juteau, Daniel and Mautner, Carl and Williamson, Geordie},
     title = {Parity sheaves},
     journal = {Journal of the American Mathematical Society},
     pages = {1169--1212},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00804-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00804-3/}
}
TY  - JOUR
AU  - Juteau, Daniel
AU  - Mautner, Carl
AU  - Williamson, Geordie
TI  - Parity sheaves
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 1169
EP  - 1212
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00804-3/
DO  - 10.1090/S0894-0347-2014-00804-3
ID  - 10_1090_S0894_0347_2014_00804_3
ER  - 
%0 Journal Article
%A Juteau, Daniel
%A Mautner, Carl
%A Williamson, Geordie
%T Parity sheaves
%J Journal of the American Mathematical Society
%D 2014
%P 1169-1212
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00804-3/
%R 10.1090/S0894-0347-2014-00804-3
%F 10_1090_S0894_0347_2014_00804_3
Juteau, Daniel; Mautner, Carl; Williamson, Geordie. Parity sheaves. Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 1169-1212. doi: 10.1090/S0894-0347-2014-00804-3

[1] Achar, Pramod N. Perverse coherent sheaves on the nilpotent cone in good characteristic 2012 1 23

[2] Beä­Linson, A. A., Bernstein, J., Deligne, P. Faisceaux pervers 1982 5 171

[3] Barthel, Gottfried, Brasselet, Jean-Paul, Fieseler, Karl-Heinz, Kaup, Ludger Equivariant intersection cohomology of toric varieties 1999 45 68

[4] Beilinson, A., Bezrukavnikov, R., Mirkoviä‡, I. Tilting exercises Mosc. Math. J. 2004

[5] Brion, Michel, Joshua, Roy Vanishing of odd-dimensional intersection cohomology. II Math. Ann. 2001 399 437

[6] Beauville, Arnaud, Laszlo, Yves Conformal blocks and generalized theta functions Comm. Math. Phys. 1994 385 419

[7] Bernstein, Joseph, Lunts, Valery Equivariant sheaves and functors 1994

[8] Borho, Walter, Macpherson, Robert Partial resolutions of nilpotent varieties 1983 23 74

[9] Braden, Tom, Macpherson, Robert From moment graphs to intersection cohomology Math. Ann. 2001 533 551

[10] Brundan, Jonathan, Ostrik, Victor Cohomology of Spaltenstein varieties Transform. Groups 2011 619 648

[11] Borel, Armand Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes Tohoku Math. J. (2) 1961 216 240

[12] Geometry of toric varieties 2002

[13] Jean-Luc Brylinski And Bin Zhang Equivariant Todd classes for toric varieties 2003

[14] Carter, Roger W. Finite groups of Lie type 1985

[15] Chriss, Neil, Ginzburg, Victor Representation theory and complex geometry 1997

[16] Cox, David A., Little, John B., Schenck, Henry K. Toric varieties 2011

[17] Collingwood, David H., Mcgovern, William M. Nilpotent orbits in semisimple Lie algebras 1993

[18] Cline, Edward, Parshall, Brian, Scott, Leonard Abstract Kazhdan-Lusztig theories Tohoku Math. J. (2) 1993 511 534

[19] Danilov, V. I. The geometry of toric varieties Uspekhi Mat. Nauk 1978

[20] De Concini, C., Lusztig, G., Procesi, C. Homology of the zero-set of a nilpotent vector field on a flag manifold J. Amer. Math. Soc. 1988 15 34

[21] De Cataldo, Mark Andrea A., Migliorini, Luca The hard Lefschetz theorem and the topology of semismall maps Ann. Sci. École Norm. Sup. (4) 2002 759 772

[22] De Cataldo, Mark Andrea A., Migliorini, Luca The Hodge theory of algebraic maps Ann. Sci. École Norm. Sup. (4) 2005 693 750

[23] Demazure, Michel Invariants symétriques entiers des groupes de Weyl et torsion Invent. Math. 1973 287 301

[24] Feit, Walter The representation theory of finite groups 1982

[25] Fresse, Lucas Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of 𝐵-orbits J. Math. Soc. Japan 2013 967 992

[26] Fulton, William Introduction to toric varieties 1993

[27] Peter Fiebig And Geordie Williamson Parity sheaves, moment graphs and the 𝑝-smooth locus of Schubert varieties

[28] Goresky, Mark, Kottwitz, Robert, Macpherson, Robert Equivariant cohomology, Koszul duality, and the localization theorem Invent. Math. 1998 25 83

[29] Gaussent, S., Littelmann, P. LS galleries, the path model, and MV cycles Duke Math. J. 2005 35 88

[30] Goresky, Mark, Macpherson, Robert Stratified Morse theory 1988

[31] Ian Grojnowski Affine 𝔰𝔩_{𝔭} controls the representation theory of the symmetric groups and related Hecke algebras 1999

[32] Herpel, Sebastian On the smoothness of centralizers in reductive groups Trans. Amer. Math. Soc. 2013 3753 3774

[33] Daniel Juteau, Carl Mautner, And Geordie Williamson Parity sheaves and tilting modules

[34] Juteau, Daniel Cohomology of the minimal nilpotent orbit Transform. Groups 2008 355 387

[35] Daniel Juteau Modular representations of reductive groups and geometry of affine Grassmannians 2008

[36] Juteau, Daniel Decomposition numbers for perverse sheaves Ann. Inst. Fourier (Grenoble) 2009 1177 1229

[37] Kac, V. G. Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups Invent. Math. 1985 69 79

[38] Kazhdan, David, Lusztig, George Schubert varieties and Poincaré duality 1980 185 203

[39] Kashiwara, Masaki, Schapira, Pierre Sheaves on manifolds 1990

[40] Kumar, Shrawan Kac-Moody groups, their flag varieties and representation theory 2002

[41] Le, Jue, Chen, Xiao-Wu Karoubianness of a triangulated category J. Algebra 2007 452 457

[42] Lusztig, George Character sheaves. IV Adv. in Math. 1986 1 63

[43] Ruslan Maksimau Canonical basis, KLR-algebras and parity sheaves 2013

[44] Mirkoviä‡, I., Vilonen, K. Geometric Langlands duality and representations of algebraic groups over commutative rings Ann. of Math. (2) 2007 95 143

[45] Nadler, David Perverse sheaves on real loop Grassmannians Invent. Math. 2005 1 73

[46] Panyushev, D. I. Rationality of singularities and the Gorenstein property of nilpotent orbits Funktsional. Anal. i Prilozhen. 1991 76 78

[47] Richardson, R. W., Jr. Conjugacy classes in Lie algebras and algebraic groups Ann. of Math. (2) 1967 1 15

[48] Ringel, Claus Michael The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences Math. Z. 1991 209 223

[49] Rothenberg, M., Steenrod, N. E. The cohomology of classifying spaces of 𝐻-spaces Bull. Amer. Math. Soc. 1965 872 875

[50] Simon Riche, Wolfgang Soergel, Geordie Williamson Modular Koszul duality

[51] Serre, Jean-Pierre Représentations linéaires des groupes finis 1967

[52] Soergel, Wolfgang On the relation between intersection cohomology and representation theory in positive characteristic J. Pure Appl. Algebra 2000 311 335

[53] Wolfgang Soergel Langlands’ philosophy and Koszul duality NATO Sci. Ser. II Math. Phys. Chem. 2001 379 414

[54] Sommers, Eric N. Equivalence classes of ideals in the nilradical of a Borel subalgebra Nagoya Math. J. 2006 161 185

[55] Springer, T. A. Quelques applications de la cohomologie d’intersection 1982 249 273

[56] Steinberg, Robert Torsion in reductive groups Advances in Math. 1975 63 92

[57] Kari Vilonen And Geordie Williamson Characteristic cycles and decomposition numbers

[58] Wang, Weiqiang Dimension of a minimal nilpotent orbit Proc. Amer. Math. Soc. 1999 935 936

[59] Williamson, Geordie, Braden, Tom Modular intersection cohomology complexes on flag varieties Math. Z. 2012 697 727

[60] Geordie Williamson Singular soergel bimodules

Cité par Sources :