Voir la notice de l'article provenant de la source American Mathematical Society
Puder, Doron 1 ; Parzanchevski, Ori 2
@article{10_1090_S0894_0347_2014_00796_7,
     author = {Puder, Doron and Parzanchevski, Ori},
     title = {Measure preserving words are primitive},
     journal = {Journal of the American Mathematical Society},
     pages = {63--97},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2015},
     doi = {10.1090/S0894-0347-2014-00796-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00796-7/}
}
                      
                      
                    TY - JOUR AU - Puder, Doron AU - Parzanchevski, Ori TI - Measure preserving words are primitive JO - Journal of the American Mathematical Society PY - 2015 SP - 63 EP - 97 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00796-7/ DO - 10.1090/S0894-0347-2014-00796-7 ID - 10_1090_S0894_0347_2014_00796_7 ER -
%0 Journal Article %A Puder, Doron %A Parzanchevski, Ori %T Measure preserving words are primitive %J Journal of the American Mathematical Society %D 2015 %P 63-97 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00796-7/ %R 10.1090/S0894-0347-2014-00796-7 %F 10_1090_S0894_0347_2014_00796_7
Puder, Doron; Parzanchevski, Ori. Measure preserving words are primitive. Journal of the American Mathematical Society, Tome 28 (2015) no. 1, pp. 63-97. doi: 10.1090/S0894-0347-2014-00796-7
[1] On the probability of satisfying a word in a group J. Group Theory 2006 685 694
[2] , Random graph coverings. I. General theory and graph connectivity Combinatorica 2002 1 18
[3] Eigenvalues and expanders Combinatorica 1986 83 96
[4] , Characters and solutions to equations in finite groups J. Algebra Appl. 2011 675 686
[5] , Criteria for equidistribution of solutions of word equations on ðð¿(2) J. Algebra 2013 282 302
[6] , On the second eigenvalue of random regular graphs Foundations of Computer Science 1987
[7] Relative expanders or weakly relatively Ramanujan graphs Duke Math. J. 2003 19 35
[8] A proof of Alonâs second eigenvalue conjecture and related problems Memoirs of the AMS September 2008
[9] GAP â Groups, Algorithms, and Programming, Version 4.6.5 2013
[10] , Commutator maps, measure preservation, and ð-systems Trans. Amer. Math. Soc. 2009 4631 4651
[11] , Stallings foldings and subgroups of free groups J. Algebra 2002 608 668
[12] , Word maps and spectra of random graph lifts Random Structures Algorithms 2010 100 135
[13] , Characters of symmetric groups: sharp bounds and applications Invent. Math. 2008 645 687
[14] , Word maps and Waring type problems J. Amer. Math. Soc. 2009 437 466
[15] , , Algebraic extensions in free groups 2007 225 253
[16] On the number of cycles of given length of a free word in several random permutations Random Structures Algorithms 1994 703 730
[17] , Stallings graphs, algebraic extensions and primitive elements in ð¹â Mathematical Proceedings of the Cambridge Philosophical Society 2014
[18] , On the Fourier expansion of word maps Bull. London Math. Soc. 2014 91 102
[19] Expansion of random graphs: New proofs, new results 2012
[20] Primitive words, free factors and measure preservation Israel Journal of Mathematics 2013
[21] Growth of primitives elements in free groups Journal of London Mathematical Society 2014
[22] Words: notes on verbal width in groups 2009
[23] Word maps, conjugacy classes, and a noncommutative Waring-type theorem Ann. of Math. (2) 2009 1383 1416
[24] Some results and problems in the theory of word maps 2013
[25] Free Group Algorithms â a GAP package, Version 1.2.0 2012
[26] Topology of finite graphs Invent. Math. 1983 551 565
[27] Enumerative combinatorics. Vol. 1 1997
[28] Note on chain conditions in free groups Osaka Math. J. 1951 221 225
[29] Test words for automorphisms of free groups Bull. London Math. Soc. 1996 255 263
[30] , A course in combinatorics 2001
[31] On Certain Sets of Elements in a Free Group Proc. London Math. Soc. (2) 1936 48 56
[32] On equivalent sets of elements in a free group Ann. of Math. 1936 768 800
[33] Profinite groups 1998
Cité par Sources :
