Cohomology of arithmetic families of (𝜑,Γ)-modules
Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 1043-1115

Voir la notice de l'article provenant de la source American Mathematical Society

We prove the finiteness and compatibility with base change of the $(\varphi , \Gamma )$-cohomology and the Iwasawa cohomology of arithmetic families of $(\varphi , \Gamma )$-modules. Using this finiteness theorem, we show that a family of Galois representations that is densely pointwise refined in the sense of Mazur is actually trianguline as a family over a large subspace. In the case of the Coleman-Mazur eigencurve, we determine the behavior at all points.
DOI : 10.1090/S0894-0347-2014-00794-3

Kedlaya, Kiran 1 ; Pottharst, Jonathan 2 ; Xiao, Liang 3

1 Department of Mathematics, University of California, San Diego, La Jolla, California 92093
2 5 Redwood Street, Boston, Massachusetts 02122
3 Department of Mathematics, University of California, Irvine, Rowland Hall 340, Irvine, California 92697
@article{10_1090_S0894_0347_2014_00794_3,
     author = {Kedlaya, Kiran and Pottharst, Jonathan and Xiao, Liang},
     title = {Cohomology of arithmetic families of {({\dh}œ‘,\^I“)-modules}},
     journal = {Journal of the American Mathematical Society},
     pages = {1043--1115},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00794-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00794-3/}
}
TY  - JOUR
AU  - Kedlaya, Kiran
AU  - Pottharst, Jonathan
AU  - Xiao, Liang
TI  - Cohomology of arithmetic families of (𝜑,Γ)-modules
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 1043
EP  - 1115
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00794-3/
DO  - 10.1090/S0894-0347-2014-00794-3
ID  - 10_1090_S0894_0347_2014_00794_3
ER  - 
%0 Journal Article
%A Kedlaya, Kiran
%A Pottharst, Jonathan
%A Xiao, Liang
%T Cohomology of arithmetic families of (𝜑,Γ)-modules
%J Journal of the American Mathematical Society
%D 2014
%P 1043-1115
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00794-3/
%R 10.1090/S0894-0347-2014-00794-3
%F 10_1090_S0894_0347_2014_00794_3
Kedlaya, Kiran; Pottharst, Jonathan; Xiao, Liang. Cohomology of arithmetic families of (𝜑,Γ)-modules. Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 1043-1115. doi: 10.1090/S0894-0347-2014-00794-3

[1] Grothendieck, A. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I Inst. Hautes Études Sci. Publ. Math. 1961 167

[2] Bellaã¯Che, Joã«L Ranks of Selmer groups in an analytic family Trans. Amer. Math. Soc. 2012 4735 4761

[3] Bellaã¯Che, Joã«L, Chenevier, Gaã«Tan Families of Galois representations and Selmer groups Astérisque 2009

[4] Benois, Denis A generalization of Greenberg’s ℒ-invariant Amer. J. Math. 2011 1573 1632

[5] Berger, Laurent An introduction to the theory of 𝑝-adic representations 2004 255 292

[6] Berger, Laurent Équations différentielles 𝑝-adiques et (𝜙,𝑁)-modules filtrés Astérisque 2008 13 38

[7] Représentations 𝑝-adiques de groupes 𝑝-adiques. I. Représentations galoisiennes et (𝜙,Γ)-modules 2008

[8] Berger, Laurent, Colmez, Pierre Familles de représentations de de Rham et monodromie 𝑝-adique Astérisque 2008 303 337

[9] Bosch, S., Gã¼Ntzer, U., Remmert, R. Non-Archimedean analysis 1984

[10] Breuil, Christophe, Emerton, Matthew Représentations 𝑝-adiques ordinaires de 𝐺𝐿₂(𝐐_{𝐩}) et compatibilité local-global Astérisque 2010 255 315

[11] Buzzard, Kevin Eigenvarieties 2007 59 120

[12] Chenevier, Gaã«Tan Sur la densité des représentations cristallines de 𝐺𝑎𝑙(\overline{ℚ}_{𝕡}/ℚ_{𝕡}) Math. Ann. 2013 1469 1525

[13] Cherbonnier, Frã©Dã©Ric, Colmez, Pierre Théorie d’Iwasawa des représentations 𝑝-adiques d’un corps local J. Amer. Math. Soc. 1999 241 268

[14] Coleman, Robert F. Classical and overconvergent modular forms Invent. Math. 1996 215 241

[15] Colmez, Pierre Théorie d’Iwasawa des représentations de de Rham d’un corps local Ann. of Math. (2) 1998 485 571

[16] Colmez, Pierre Représentations triangulines de dimension 2 Astérisque 2008 213 258

[17] Colmez, Pierre Représentations de 𝐺𝐿₂(𝐐_{𝐩}) et (𝜙,Γ)-modules Astérisque 2010 281 509

[18] Colmez, Pierre (𝜙,Γ)-modules et représentations du mirabolique de 𝐺𝐿₂(𝐐_{𝐩}) Astérisque 2010 61 153

[19] Conrad, Brian Irreducible components of rigid spaces Ann. Inst. Fourier (Grenoble) 1999 473 541

[20] Crew, Richard Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve Ann. Sci. École Norm. Sup. (4) 1998 717 763

[21] Eisenbud, David Commutative algebra 1995

[22] Fontaine, Jean-Marc Représentations 𝑝-adiques des corps locaux. I 1990 249 309

[23] Greenberg, Ralph Iwasawa theory and 𝑝-adic deformations of motives 1994 193 223

[24] Hartshorne, Robin Algebraic geometry 1977

[25] Herr, Laurent Sur la cohomologie galoisienne des corps 𝑝-adiques Bull. Soc. Math. France 1998 563 600

[26] Herr, Laurent Une approche nouvelle de la dualité locale de Tate Math. Ann. 2001 307 337

[27] Kedlaya, Kiran S. Finiteness of rigid cohomology with coefficients Duke Math. J. 2006 15 97

[28] Kedlaya, Kiran S. Slope filtrations for relative Frobenius Astérisque 2008 259 301

[29] Kedlaya, Kiran, Liu, Ruochuan On families of 𝜙, Γ-modules Algebra Number Theory 2010 943 967

[30] Kisin, Mark Overconvergent modular forms and the Fontaine-Mazur conjecture Invent. Math. 2003 373 454

[31] Liu, Ruochuan Cohomology and duality for (𝜙,Γ)-modules over the Robba ring Int. Math. Res. Not. IMRN 2008

[32] Matsumura, Hideyuki Commutative ring theory 1989

[33] Nakamura, Kentaro Classification of two-dimensional split trianguline representations of 𝑝-adic fields Compos. Math. 2009 865 914

[34] Nekovã¡Å™, Jan Selmer complexes Astérisque 2006

[35] Pottharst, Jonathan Analytic families of finite-slope Selmer groups Algebra Number Theory 2013 1571 1612

[36] Raynaud, M. Flat modules in algebraic geometry Compositio Math. 1972 11 31

[37] Schneider, Peter Nonarchimedean functional analysis 2002

[38] Schneider, Peter, Teitelbaum, Jeremy Algebras of 𝑝-adic distributions and admissible representations Invent. Math. 2003 145 196

Cité par Sources :