Voir la notice de l'article provenant de la source American Mathematical Society
Kedlaya, Kiran 1 ; Pottharst, Jonathan 2 ; Xiao, Liang 3
@article{10_1090_S0894_0347_2014_00794_3,
author = {Kedlaya, Kiran and Pottharst, Jonathan and Xiao, Liang},
title = {Cohomology of arithmetic families of {({\dh},\^I)-modules}},
journal = {Journal of the American Mathematical Society},
pages = {1043--1115},
publisher = {mathdoc},
volume = {27},
number = {4},
year = {2014},
doi = {10.1090/S0894-0347-2014-00794-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00794-3/}
}
TY - JOUR AU - Kedlaya, Kiran AU - Pottharst, Jonathan AU - Xiao, Liang TI - Cohomology of arithmetic families of (ð,Î)-modules JO - Journal of the American Mathematical Society PY - 2014 SP - 1043 EP - 1115 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00794-3/ DO - 10.1090/S0894-0347-2014-00794-3 ID - 10_1090_S0894_0347_2014_00794_3 ER -
%0 Journal Article %A Kedlaya, Kiran %A Pottharst, Jonathan %A Xiao, Liang %T Cohomology of arithmetic families of (ð,Î)-modules %J Journal of the American Mathematical Society %D 2014 %P 1043-1115 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00794-3/ %R 10.1090/S0894-0347-2014-00794-3 %F 10_1090_S0894_0347_2014_00794_3
Kedlaya, Kiran; Pottharst, Jonathan; Xiao, Liang. Cohomology of arithmetic families of (ð,Î)-modules. Journal of the American Mathematical Society, Tome 27 (2014) no. 4, pp. 1043-1115. doi: 10.1090/S0894-0347-2014-00794-3
[1] Ãléments de géométrie algébrique. III. Ãtude cohomologique des faisceaux cohérents. I Inst. Hautes Ãtudes Sci. Publ. Math. 1961 167
[2] Ranks of Selmer groups in an analytic family Trans. Amer. Math. Soc. 2012 4735 4761
[3] , Families of Galois representations and Selmer groups Astérisque 2009
[4] A generalization of Greenbergâs â-invariant Amer. J. Math. 2011 1573 1632
[5] An introduction to the theory of ð-adic representations 2004 255 292
[6] Ãquations différentielles ð-adiques et (ð,ð)-modules filtrés Astérisque 2008 13 38
[7] Représentations ð-adiques de groupes ð-adiques. I. Représentations galoisiennes et (ð,Î)-modules 2008
[8] , Familles de représentations de de Rham et monodromie ð-adique Astérisque 2008 303 337
[9] , , Non-Archimedean analysis 1984
[10] , Représentations ð-adiques ordinaires de ðºð¿â(ð_{ð©}) et compatibilité local-global Astérisque 2010 255 315
[11] Eigenvarieties 2007 59 120
[12] Sur la densité des représentations cristallines de ðºðð(\overline{â}_{ð¡}/â_{ð¡}) Math. Ann. 2013 1469 1525
[13] , Théorie dâIwasawa des représentations ð-adiques dâun corps local J. Amer. Math. Soc. 1999 241 268
[14] Classical and overconvergent modular forms Invent. Math. 1996 215 241
[15] Théorie dâIwasawa des représentations de de Rham dâun corps local Ann. of Math. (2) 1998 485 571
[16] Représentations triangulines de dimension 2 Astérisque 2008 213 258
[17] Représentations de ðºð¿â(ð_{ð©}) et (ð,Î)-modules Astérisque 2010 281 509
[18] (ð,Î)-modules et représentations du mirabolique de ðºð¿â(ð_{ð©}) Astérisque 2010 61 153
[19] Irreducible components of rigid spaces Ann. Inst. Fourier (Grenoble) 1999 473 541
[20] Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve Ann. Sci. Ãcole Norm. Sup. (4) 1998 717 763
[21] Commutative algebra 1995
[22] Représentations ð-adiques des corps locaux. I 1990 249 309
[23] Iwasawa theory and ð-adic deformations of motives 1994 193 223
[24] Algebraic geometry 1977
[25] Sur la cohomologie galoisienne des corps ð-adiques Bull. Soc. Math. France 1998 563 600
[26] Une approche nouvelle de la dualité locale de Tate Math. Ann. 2001 307 337
[27] Finiteness of rigid cohomology with coefficients Duke Math. J. 2006 15 97
[28] Slope filtrations for relative Frobenius Astérisque 2008 259 301
[29] , On families of ð, Î-modules Algebra Number Theory 2010 943 967
[30] Overconvergent modular forms and the Fontaine-Mazur conjecture Invent. Math. 2003 373 454
[31] Cohomology and duality for (ð,Î)-modules over the Robba ring Int. Math. Res. Not. IMRN 2008
[32] Commutative ring theory 1989
[33] Classification of two-dimensional split trianguline representations of ð-adic fields Compos. Math. 2009 865 914
[34] Selmer complexes Astérisque 2006
[35] Analytic families of finite-slope Selmer groups Algebra Number Theory 2013 1571 1612
[36] Flat modules in algebraic geometry Compositio Math. 1972 11 31
[37] Nonarchimedean functional analysis 2002
[38] , Algebras of ð-adic distributions and admissible representations Invent. Math. 2003 145 196
Cité par Sources :