Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_2014_00784_0,
     author = {Zhang, Wei},
     title = {Automorphic period and the central value of {Rankin-Selberg} {L-function}},
     journal = {Journal of the American Mathematical Society},
     pages = {541--612},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00784-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00784-0/}
}
                      
                      
                    TY - JOUR AU - Zhang, Wei TI - Automorphic period and the central value of Rankin-Selberg L-function JO - Journal of the American Mathematical Society PY - 2014 SP - 541 EP - 612 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00784-0/ DO - 10.1090/S0894-0347-2014-00784-0 ID - 10_1090_S0894_0347_2014_00784_0 ER -
%0 Journal Article %A Zhang, Wei %T Automorphic period and the central value of Rankin-Selberg L-function %J Journal of the American Mathematical Society %D 2014 %P 541-612 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00784-0/ %R 10.1090/S0894-0347-2014-00784-0 %F 10_1090_S0894_0347_2014_00784_0
Zhang, Wei. Automorphic period and the central value of Rankin-Selberg L-function. Journal of the American Mathematical Society, Tome 27 (2014) no. 2, pp. 541-612. doi: 10.1090/S0894-0347-2014-00784-0
[1] , , , Multiplicity one theorems Ann. of Math. (2) 2010 1407 1434
[2] La conjecture locale de Gross-Prasad pour les représentations tempérés des groupes unitaires, arXiv:1205.2987
[3] , , Almost ð¿Â² matrix coefficients J. Reine Angew. Math. 1988 97 110
[4] , Positivity of quadratic base change ð¿-functions Bull. Soc. Math. France 2001 33 90
[5] , , On representations distinguished by unitary groups Publ. Math. Inst. Hautes Ãtudes Sci. 2012 185 323
[6] Twisted tensors and Euler products Bull. Soc. Math. France 1988 295 313
[7] , , Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups. Astérisque
[8] , On endoscopy and the refined Gross-Prasad conjecture for (ððâ ,ððâ) J. Inst. Math. Jussieu 2011 235 324
[9] Decomposition of Eisenstein series: Rankin triple products Ann. of Math. (2) 1987 209 235
[10] , , Generic representations for the unitary group in three variables Israel J. Math. 2001 173 237
[11] , , On the nonvanishing of the central value of the Rankin-Selberg ð¿-functions J. Amer. Math. Soc. 2004 679 722
[12] , , Models for certain residual representations of unitary groups 2009 125 146
[13] Classical Fourier analysis 2008
[14] Heights and the special values of ð¿-series 1987 115 187
[15] On the motive of a reductive group Invent. Math. 1997 287 313
[16] , Heegner points and derivatives of ð¿-series Invent. Math. 1986 225 320
[17] Harmonic analysis on reductive ð-adic groups 1970
[18] Admissible invariant distributions on reductive ð-adic groups 1978 281 347
[19] , On a conjecture of Jacquet 2004 355 371
[20] ð¿-functions and periods of adjoint motives Algebra Number Theory 2013 117 155
[21] A Refined Gross-Prasad Conjecture for Unitary Groups 2011 120
[22] Trilinear forms and the central values of triple product ð¿-functions Duke Math. J. 2008 281 307
[23] , On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture Geom. Funct. Anal. 2010 1378 1425
[24] , Spherical characters for a strongly tempered pair. Appendix to \cite{Zh2}
[25] Archimedean Rankin-Selberg integrals 2009 57 172
[26] Distinction by the quasi-split unitary group Israel J. Math. 2010 269 324
[27] , , Rankin-Selberg convolutions Amer. J. Math. 1983 367 464
[28] , On the Gross-Prasad conjecture for unitary groups 2011 205 264
[29] , On Euler products and the classification of automorphic representations. I Amer. J. Math. 1981 499 558
[30] , On Euler products and the classification of automorphic forms. II Amer. J. Math. 1981 777 815
[31] , On the nonnegativity of ð¿(1\over2,ð) for ðð_{2ð+1} Ann. of Math. (2) 2003 891 917
[32] On the nonnegativity of Rankin-Selberg ð¿-functions at the center of symmetry Int. Math. Res. Not. 2003 65 75
[33] , On a new functional equation for local integrals, preprint.
[34] Endoscopic classification of representations of quasi-split unitary groups, arXiv:1206.0882v1
[35] , Spherical characters on ð-adic symmetric spaces Amer. J. Math. 1996 91 178
[36] , Periods and harmonic analysis on spherical varieties, arXiv:1203.0039.
[37] Bounding matrix coefficients for smooth vectors of tempered representations Proc. Amer. Math. Soc. 2009 353 357
[38] Multiplicity one theorems 1979 209 212
[39] Congruent numbers and Heegner points, preprint
[40] Sur les valeurs de certaines fonctions ð¿ automorphes en leur centre de symétrie Compositio Math. 1985 173 242
[41] Une formule intégrale reli la conjecture locale de Gross-Prasad, me partie: extension aux représentations tempérés. arXiv:0904.0314.
[42] Tempered automorphic representations of the unitary group, arXiv: 1106.1127
[43] Rankin triple products and quantum chaos 2002 81
[44] , , The Gross-Zagier formula on Shimura curves. Ann. of Math. Studies #184, Princeton University Press, 2012
[45] The fundamental lemma of Jacquet and Rallis Duke Math. J. 2011 167 227
[46] Heights of Heegner points on Shimura curves Ann. of Math. (2) 2001 27 147
[47] Gross-Zagier formula for ðºð¿â Asian J. Math. 2001 183 290
[48] Gross-Zagier formula for ðºð¿(2). II 2004 191 214
[49] Linear forms, algebraic cycles, and derivatives of L-series, preprint.
[50] On arithmetic fundamental lemmas Invent. Math. 2012 197 252
[51] Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups, Ann. Math., in press.
Cité par Sources :
