Automorphic period and the central value of Rankin-Selberg L-function
Journal of the American Mathematical Society, Tome 27 (2014) no. 2, pp. 541-612

Voir la notice de l'article provenant de la source American Mathematical Society

Using the relative trace formula of Jacquet and Rallis, under some local conditions we prove a refinement of the global Gan-Gross-Prasad conjecture proposed by Ichino-Ikeda and N. Harris for unitary groups. We need to assume some expected properties of L-packets and some part of the local Gan-Gross-Prasad conjecture.
DOI : 10.1090/S0894-0347-2014-00784-0

Zhang, Wei 1

1 Department of Mathematics, Columbia University, MC 4423, 2990 Broadway, New York, New York 10027
@article{10_1090_S0894_0347_2014_00784_0,
     author = {Zhang, Wei},
     title = {Automorphic period and the central value of {Rankin-Selberg} {L-function}},
     journal = {Journal of the American Mathematical Society},
     pages = {541--612},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2014},
     doi = {10.1090/S0894-0347-2014-00784-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00784-0/}
}
TY  - JOUR
AU  - Zhang, Wei
TI  - Automorphic period and the central value of Rankin-Selberg L-function
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 541
EP  - 612
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00784-0/
DO  - 10.1090/S0894-0347-2014-00784-0
ID  - 10_1090_S0894_0347_2014_00784_0
ER  - 
%0 Journal Article
%A Zhang, Wei
%T Automorphic period and the central value of Rankin-Selberg L-function
%J Journal of the American Mathematical Society
%D 2014
%P 541-612
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2014-00784-0/
%R 10.1090/S0894-0347-2014-00784-0
%F 10_1090_S0894_0347_2014_00784_0
Zhang, Wei. Automorphic period and the central value of Rankin-Selberg L-function. Journal of the American Mathematical Society, Tome 27 (2014) no. 2, pp. 541-612. doi: 10.1090/S0894-0347-2014-00784-0

[1] Aizenbud, Avraham, Gourevitch, Dmitry, Rallis, Stephen, Schiffmann, Gã©Rard Multiplicity one theorems Ann. of Math. (2) 2010 1407 1434

[2] R. Beuzart-Plessis La conjecture locale de Gross-Prasad pour les représentations tempérés des groupes unitaires, arXiv:1205.2987

[3] Cowling, M., Haagerup, U., Howe, R. Almost 𝐿² matrix coefficients J. Reine Angew. Math. 1988 97 110

[4] Jacquet, Hervã©, Chen, Nan Positivity of quadratic base change 𝐿-functions Bull. Soc. Math. France 2001 33 90

[5] Feigon, Brooke, Lapid, Erez, Offen, Omer On representations distinguished by unitary groups Publ. Math. Inst. Hautes Études Sci. 2012 185 323

[6] Flicker, Yuval Z. Twisted tensors and Euler products Bull. Soc. Math. France 1988 295 313

[7] Wee Teck Gan, Benedict H. Gross, Dipendra Prasad Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups. Astérisque

[8] Gan, Wee Teck, Ichino, Atsushi On endoscopy and the refined Gross-Prasad conjecture for (𝑆𝑂₅,𝑆𝑂₄) J. Inst. Math. Jussieu 2011 235 324

[9] Garrett, Paul B. Decomposition of Eisenstein series: Rankin triple products Ann. of Math. (2) 1987 209 235

[10] Gelbart, Stephen, Jacquet, Hervã©, Rogawski, Jonathan Generic representations for the unitary group in three variables Israel J. Math. 2001 173 237

[11] Ginzburg, David, Jiang, Dihua, Rallis, Stephen On the nonvanishing of the central value of the Rankin-Selberg 𝐿-functions J. Amer. Math. Soc. 2004 679 722

[12] Ginzburg, David, Jiang, Dihua, Rallis, Stephen Models for certain residual representations of unitary groups 2009 125 146

[13] Grafakos, Loukas Classical Fourier analysis 2008

[14] Gross, Benedict H. Heights and the special values of 𝐿-series 1987 115 187

[15] Gross, Benedict H. On the motive of a reductive group Invent. Math. 1997 287 313

[16] Gross, Benedict H., Zagier, Don B. Heegner points and derivatives of 𝐿-series Invent. Math. 1986 225 320

[17] Harish-Chandra Harmonic analysis on reductive 𝑝-adic groups 1970

[18] Harish-Chandra Admissible invariant distributions on reductive 𝑝-adic groups 1978 281 347

[19] Harris, Michael, Kudla, Stephen S. On a conjecture of Jacquet 2004 355 371

[20] Harris, Michael 𝐿-functions and periods of adjoint motives Algebra Number Theory 2013 117 155

[21] Harris, Richard Neal A Refined Gross-Prasad Conjecture for Unitary Groups 2011 120

[22] Ichino, Atsushi Trilinear forms and the central values of triple product 𝐿-functions Duke Math. J. 2008 281 307

[23] Ichino, Atsushi, Ikeda, Tamutsu On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture Geom. Funct. Anal. 2010 1378 1425

[24] A. Ichino, W. Zhang Spherical characters for a strongly tempered pair. Appendix to \cite{Zh2}

[25] Jacquet, Hervã© Archimedean Rankin-Selberg integrals 2009 57 172

[26] Jacquet, Hervã© Distinction by the quasi-split unitary group Israel J. Math. 2010 269 324

[27] Jacquet, H., Piatetskii-Shapiro, I. I., Shalika, J. A. Rankin-Selberg convolutions Amer. J. Math. 1983 367 464

[28] Jacquet, Hervã©, Rallis, Stephen On the Gross-Prasad conjecture for unitary groups 2011 205 264

[29] Jacquet, H., Shalika, J. A. On Euler products and the classification of automorphic representations. I Amer. J. Math. 1981 499 558

[30] Jacquet, H., Shalika, J. A. On Euler products and the classification of automorphic forms. II Amer. J. Math. 1981 777 815

[31] Lapid, Erez, Rallis, Stephen On the nonnegativity of 𝐿(1\over2,𝜋) for 𝑆𝑂_{2𝑛+1} Ann. of Math. (2) 2003 891 917

[32] Lapid, Erez M. On the nonnegativity of Rankin-Selberg 𝐿-functions at the center of symmetry Int. Math. Res. Not. 2003 65 75

[33] E. Lapid, Z. Mao On a new functional equation for local integrals, preprint.

[34] C-P. Mok Endoscopic classification of representations of quasi-split unitary groups, arXiv:1206.0882v1

[35] Rader, Cary, Rallis, Steve Spherical characters on 𝔭-adic symmetric spaces Amer. J. Math. 1996 91 178

[36] Y. Sakellaridis, A. Venkatesh Periods and harmonic analysis on spherical varieties, arXiv:1203.0039.

[37] Sun, Binyong Bounding matrix coefficients for smooth vectors of tempered representations Proc. Amer. Math. Soc. 2009 353 357

[38] Piatetski-Shapiro, I. I. Multiplicity one theorems 1979 209 212

[39] Ye Tian Congruent numbers and Heegner points, preprint

[40] Waldspurger, J.-L. Sur les valeurs de certaines fonctions 𝐿 automorphes en leur centre de symétrie Compositio Math. 1985 173 242

[41] J. Waldspurger Une formule intégrale reli la conjecture locale de Gross-Prasad, me partie: extension aux représentations tempérés. arXiv:0904.0314.

[42] P.-J. White Tempered automorphic representations of the unitary group, arXiv: 1106.1127

[43] Watson, Thomas Crawford Rankin triple products and quantum chaos 2002 81

[44] Xinyi Yuan, Shou-Wu Zhang, Wei Zhang The Gross-Zagier formula on Shimura curves. Ann. of Math. Studies #184, Princeton University Press, 2012

[45] Yun, Zhiwei The fundamental lemma of Jacquet and Rallis Duke Math. J. 2011 167 227

[46] Zhang, Shouwu Heights of Heegner points on Shimura curves Ann. of Math. (2) 2001 27 147

[47] Zhang, Shou-Wu Gross-Zagier formula for 𝐺𝐿₂ Asian J. Math. 2001 183 290

[48] Zhang, Shou-Wu Gross-Zagier formula for 𝐺𝐿(2). II 2004 191 214

[49] Shouwu Zhang Linear forms, algebraic cycles, and derivatives of L-series, preprint.

[50] Zhang, Wei On arithmetic fundamental lemmas Invent. Math. 2012 197 252

[51] Wei Zhang Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups, Ann. Math., in press.

Cité par Sources :