Nelson, Paul  1 ; Pitale, Ameya  2 ; Saha, Abhishek  3
@article{10_1090_S0894_0347_2013_00779_1,
author = {Nelson, Paul and Pitale, Ameya and Saha, Abhishek},
title = {Bounds for {Rankin{\textendash}Selberg} integrals and quantum unique ergodicity for powerful levels},
journal = {Journal of the American Mathematical Society},
pages = {147--191},
year = {2014},
volume = {27},
number = {1},
doi = {10.1090/S0894-0347-2013-00779-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00779-1/}
}
TY - JOUR AU - Nelson, Paul AU - Pitale, Ameya AU - Saha, Abhishek TI - Bounds for Rankin–Selberg integrals and quantum unique ergodicity for powerful levels JO - Journal of the American Mathematical Society PY - 2014 SP - 147 EP - 191 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00779-1/ DO - 10.1090/S0894-0347-2013-00779-1 ID - 10_1090_S0894_0347_2013_00779_1 ER -
%0 Journal Article %A Nelson, Paul %A Pitale, Ameya %A Saha, Abhishek %T Bounds for Rankin–Selberg integrals and quantum unique ergodicity for powerful levels %J Journal of the American Mathematical Society %D 2014 %P 147-191 %V 27 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00779-1/ %R 10.1090/S0894-0347-2013-00779-1 %F 10_1090_S0894_0347_2013_00779_1
Nelson, Paul; Pitale, Ameya; Saha, Abhishek. Bounds for Rankin–Selberg integrals and quantum unique ergodicity for powerful levels. Journal of the American Mathematical Society, Tome 27 (2014) no. 1, pp. 147-191. doi: 10.1090/S0894-0347-2013-00779-1
[1] , Hecke operators on Γ₀(𝑚) Math. Ann. 1970 134 160
[2] Automorphic forms and representations 1997
[3] , , Local Rankin-Selberg convolutions for 𝐺𝐿_{𝑛}: explicit conductor formula J. Amer. Math. Soc. 1998 703 730
[4] La conjecture de Weil. I Inst. Hautes Études Sci. Publ. Math. 1974 273 307
[5] Hyperbolic distribution problems and half-integral weight Maass forms Invent. Math. 1988 73 90
[6] , , , Distribution of periodic torus orbits and Duke’s theorem for cubic fields Ann. of Math. (2) 2011 815 885
[7] Decomposition of Eisenstein series: Rankin triple products Ann. of Math. (2) 1987 209 235
[8] Automorphic forms on adèle groups 1975
[9] , A relation between automorphic representations of 𝐺𝐿(2) and 𝐺𝐿(3) Ann. Sci. École Norm. Sup. (4) 1978 471 542
[10] , Forms of 𝐺𝐿(2) from the analytic point of view 1979 213 251
[11] Sieves in number theory 2001
[12] , Heights and the central critical values of triple product 𝐿-functions Compositio Math. 1992 143 209
[13] , The central critical value of a triple product 𝐿-function Ann. of Math. (2) 1991 605 672
[14] Sieving for mass equidistribution Ann. of Math. (2) 2010 1499 1516
[15] , Mass equidistribution for Hecke eigenforms Ann. of Math. (2) 2010 1517 1528
[16] Trilinear forms and the central values of triple product 𝐿-functions Duke Math. J. 2008 281 307
[17] , On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture Geom. Funct. Anal. 2010 1378 1425
[18] Topics in classical automorphic forms 1997
[19] Spectral methods of automorphic forms 2002
[20] , Analytic number theory 2004
[21] , Perspectives on the analytic theory of 𝐿-functions Geom. Funct. Anal. 2000 705 741
[22] Automorphic forms on 𝐺𝐿(2). Part II 1972
[23] , Automorphic forms on 𝐺𝐿(2) 1970
[24] Functoriality for the exterior square of 𝐺𝐿₄ and the symmetric fourth of 𝐺𝐿₂ J. Amer. Math. Soc. 2003 139 183
[25] , , Rankin-Selberg 𝐿-functions in the level aspect Duke Math. J. 2002 123 191
[26] Abschätzungen für die Funktion Ψ_{𝐾}(𝑥,𝑦) in algebraischen Zahlkörpern Manuscripta Math. 1990 319 331
[27] , Mass equidistribution for Hecke eigenforms Comm. Pure Appl. Math. 2003 874 891
[28] , The subconvexity problem for 𝐺𝐿₂ Publ. Math. Inst. Hautes Études Sci. 2010 171 271
[29] Equidistribution of cusp forms in the level aspect Duke Math. J. 2011 467 501
[30] Mass equidistribution of Hilbert modular eigenforms Ramanujan J. 2012 235 284
[31] , Rankin triple 𝐿 functions Compositio Math. 1987 31 115
[32] , On the global root numbers of 𝐺𝐿(𝑛)×𝐺𝐿(𝑚) 1999 311 330
[33] , The behaviour of eigenstates of arithmetic hyperbolic manifolds Comm. Math. Phys. 1994 195 213
[34] Arithmetic quantum chaos 1995 183 236
[35] Some remarks on local newforms for 𝐺𝐿(2) J. Ramanujan Math. Soc. 2002 115 147
[36] A course in arithmetic 1973
[37] Some examples of new forms J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1977 97 113
[38] Introduction to the arithmetic theory of automorphic functions 1971
[39] Weak subconvexity for central values of 𝐿-functions Ann. of Math. (2) 2010 1469 1498
[40] , The prime geodesic theorem J. Reine Angew. Math. 2013 105 120
[41] Rankin triple products and quantum chaos 2002 81
Cité par Sources :