Bounds for Rankin–Selberg integrals and quantum unique ergodicity for powerful levels
Journal of the American Mathematical Society, Tome 27 (2014) no. 1, pp. 147-191

Voir la notice de l'article provenant de la source American Mathematical Society

Let $f$ be a classical holomorphic newform of level $q$ and even weight $k$. We show that the pushforward to the full level modular curve of the mass of $f$ equidistributes as $q k \rightarrow \infty$. This generalizes known results in the case that $q$ is squarefree. We obtain a power savings in the rate of equidistribution as $q$ becomes sufficiently “powerful” (far away from being squarefree) and in particular in the “depth aspect” as $q$ traverses the powers of a fixed prime. We compare the difficulty of such equidistribution problems to that of corresponding subconvexity problems by deriving explicit extensions of Watson’s formula to certain triple product integrals involving forms of nonsquarefree level. By a theorem of Ichino and a lemma of Michel–Venkatesh, this amounts to a detailed study of Rankin–Selberg integrals $\int |f|^2 E$ attached to newforms $f$ of arbitrary level and Eisenstein series $E$ of full level. We find that the local factors of such integrals participate in many amusing analogies with global $L$-functions. For instance, we observe that the mass equidistribution conjecture with a power savings in the depth aspect is equivalent to knowing either a global subconvexity bound or what we call a “local subconvexity bound”; a consequence of our local calculations is what we call a “local Lindelöf hypothesis”.
DOI : 10.1090/S0894-0347-2013-00779-1

Nelson, Paul 1 ; Pitale, Ameya 2 ; Saha, Abhishek 3

1 École Polytechnique Fédérale de Lausanne, Mathgeom-TAN station 8, CH-1015 Lausanne, Switzerland
2 Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019
3 Department of Mathematics, University of Bristol, Bristol BS81TW, United Kingdom
@article{10_1090_S0894_0347_2013_00779_1,
     author = {Nelson, Paul and Pitale, Ameya and Saha, Abhishek},
     title = {Bounds for {Rankin\^a€“Selberg} integrals and quantum unique ergodicity for powerful levels},
     journal = {Journal of the American Mathematical Society},
     pages = {147--191},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2014},
     doi = {10.1090/S0894-0347-2013-00779-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00779-1/}
}
TY  - JOUR
AU  - Nelson, Paul
AU  - Pitale, Ameya
AU  - Saha, Abhishek
TI  - Bounds for Rankin–Selberg integrals and quantum unique ergodicity for powerful levels
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 147
EP  - 191
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00779-1/
DO  - 10.1090/S0894-0347-2013-00779-1
ID  - 10_1090_S0894_0347_2013_00779_1
ER  - 
%0 Journal Article
%A Nelson, Paul
%A Pitale, Ameya
%A Saha, Abhishek
%T Bounds for Rankin–Selberg integrals and quantum unique ergodicity for powerful levels
%J Journal of the American Mathematical Society
%D 2014
%P 147-191
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00779-1/
%R 10.1090/S0894-0347-2013-00779-1
%F 10_1090_S0894_0347_2013_00779_1
Nelson, Paul; Pitale, Ameya; Saha, Abhishek. Bounds for Rankin–Selberg integrals and quantum unique ergodicity for powerful levels. Journal of the American Mathematical Society, Tome 27 (2014) no. 1, pp. 147-191. doi: 10.1090/S0894-0347-2013-00779-1

[1] Atkin, A. O. L., Lehner, J. Hecke operators on Γ₀(𝑚) Math. Ann. 1970 134 160

[2] Bump, Daniel Automorphic forms and representations 1997

[3] Bushnell, Colin J., Henniart, Guy M., Kutzko, Philip C. Local Rankin-Selberg convolutions for 𝐺𝐿_{𝑛}: explicit conductor formula J. Amer. Math. Soc. 1998 703 730

[4] Deligne, Pierre La conjecture de Weil. I Inst. Hautes Études Sci. Publ. Math. 1974 273 307

[5] Duke, W. Hyperbolic distribution problems and half-integral weight Maass forms Invent. Math. 1988 73 90

[6] Einsiedler, Manfred, Lindenstrauss, Elon, Michel, Philippe, Venkatesh, Akshay Distribution of periodic torus orbits and Duke’s theorem for cubic fields Ann. of Math. (2) 2011 815 885

[7] Garrett, Paul B. Decomposition of Eisenstein series: Rankin triple products Ann. of Math. (2) 1987 209 235

[8] Gelbart, Stephen S. Automorphic forms on adèle groups 1975

[9] Gelbart, Stephen, Jacquet, Herv㩠A relation between automorphic representations of 𝐺𝐿(2) and 𝐺𝐿(3) Ann. Sci. École Norm. Sup. (4) 1978 471 542

[10] Gelbart, Stephen, Jacquet, Herv㩠Forms of 𝐺𝐿(2) from the analytic point of view 1979 213 251

[11] Greaves, George Sieves in number theory 2001

[12] Gross, Benedict H., Kudla, Stephen S. Heights and the central critical values of triple product 𝐿-functions Compositio Math. 1992 143 209

[13] Harris, Michael, Kudla, Stephen S. The central critical value of a triple product 𝐿-function Ann. of Math. (2) 1991 605 672

[14] Holowinsky, Roman Sieving for mass equidistribution Ann. of Math. (2) 2010 1499 1516

[15] Holowinsky, Roman, Soundararajan, Kannan Mass equidistribution for Hecke eigenforms Ann. of Math. (2) 2010 1517 1528

[16] Ichino, Atsushi Trilinear forms and the central values of triple product 𝐿-functions Duke Math. J. 2008 281 307

[17] Ichino, Atsushi, Ikeda, Tamutsu On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture Geom. Funct. Anal. 2010 1378 1425

[18] Iwaniec, Henryk Topics in classical automorphic forms 1997

[19] Iwaniec, Henryk Spectral methods of automorphic forms 2002

[20] Iwaniec, Henryk, Kowalski, Emmanuel Analytic number theory 2004

[21] Iwaniec, H., Sarnak, P. Perspectives on the analytic theory of 𝐿-functions Geom. Funct. Anal. 2000 705 741

[22] Jacquet, Herv㩠Automorphic forms on 𝐺𝐿(2). Part II 1972

[23] Jacquet, H., Langlands, R. P. Automorphic forms on 𝐺𝐿(2) 1970

[24] Kim, Henry H. Functoriality for the exterior square of 𝐺𝐿₄ and the symmetric fourth of 𝐺𝐿₂ J. Amer. Math. Soc. 2003 139 183

[25] Kowalski, E., Michel, P., Vanderkam, J. Rankin-Selberg 𝐿-functions in the level aspect Duke Math. J. 2002 123 191

[26] Krause, Uwe Abschätzungen für die Funktion Ψ_{𝐾}(𝑥,𝑦) in algebraischen Zahlkörpern Manuscripta Math. 1990 319 331

[27] Luo, Wenzhi, Sarnak, Peter Mass equidistribution for Hecke eigenforms Comm. Pure Appl. Math. 2003 874 891

[28] Michel, Philippe, Venkatesh, Akshay The subconvexity problem for 𝐺𝐿₂ Publ. Math. Inst. Hautes Études Sci. 2010 171 271

[29] Nelson, Paul D. Equidistribution of cusp forms in the level aspect Duke Math. J. 2011 467 501

[30] Nelson, Paul D. Mass equidistribution of Hilbert modular eigenforms Ramanujan J. 2012 235 284

[31] Piatetski-Shapiro, I., Rallis, Stephen Rankin triple 𝐿 functions Compositio Math. 1987 31 115

[32] Prasad, Dipendra, Ramakrishnan, Dinakar On the global root numbers of 𝐺𝐿(𝑛)×𝐺𝐿(𝑚) 1999 311 330

[33] Rudnick, Zeã©V, Sarnak, Peter The behaviour of eigenstates of arithmetic hyperbolic manifolds Comm. Math. Phys. 1994 195 213

[34] Sarnak, Peter Arithmetic quantum chaos 1995 183 236

[35] Schmidt, Ralf Some remarks on local newforms for 𝐺𝐿(2) J. Ramanujan Math. Soc. 2002 115 147

[36] Serre, J.-P. A course in arithmetic 1973

[37] Shimizu, Hideo Some examples of new forms J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1977 97 113

[38] Shimura, Goro Introduction to the arithmetic theory of automorphic functions 1971

[39] Soundararajan, Kannan Weak subconvexity for central values of 𝐿-functions Ann. of Math. (2) 2010 1469 1498

[40] Soundararajan, K., Young, Matthew P. The prime geodesic theorem J. Reine Angew. Math. 2013 105 120

[41] Watson, Thomas Crawford Rankin triple products and quantum chaos 2002 81

Cité par Sources :