Voir la notice de l'article provenant de la source American Mathematical Society
Bakhtin, Yuri 1 ; Cator, Eric 2 ; Khanin, Konstantin 3
@article{10_1090_S0894_0347_2013_00773_0,
author = {Bakhtin, Yuri and Cator, Eric and Khanin, Konstantin},
title = {Space-time stationary solutions for the {Burgers} equation},
journal = {Journal of the American Mathematical Society},
pages = {193--238},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2014},
doi = {10.1090/S0894-0347-2013-00773-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00773-0/}
}
TY - JOUR AU - Bakhtin, Yuri AU - Cator, Eric AU - Khanin, Konstantin TI - Space-time stationary solutions for the Burgers equation JO - Journal of the American Mathematical Society PY - 2014 SP - 193 EP - 238 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00773-0/ DO - 10.1090/S0894-0347-2013-00773-0 ID - 10_1090_S0894_0347_2013_00773_0 ER -
%0 Journal Article %A Bakhtin, Yuri %A Cator, Eric %A Khanin, Konstantin %T Space-time stationary solutions for the Burgers equation %J Journal of the American Mathematical Society %D 2014 %P 193-238 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00773-0/ %R 10.1090/S0894-0347-2013-00773-0 %F 10_1090_S0894_0347_2013_00773_0
Bakhtin, Yuri; Cator, Eric; Khanin, Konstantin. Space-time stationary solutions for the Burgers equation. Journal of the American Mathematical Society, Tome 27 (2014) no. 1, pp. 193-238. doi: 10.1090/S0894-0347-2013-00773-0
[1] , Hammersleyâs interacting particle process and longest increasing subsequences Probab. Theory Related Fields 1995 199 213
[2] Random dynamical systems 1998
[3] Burgers equation with random boundary conditions Proc. Amer. Math. Soc. 2007 2257 2262
[4] , Busemann functions and equilibrium measures in last passage percolation models Probab. Theory Related Fields 2012 89 125
[5] , A shape theorem and semi-infinite geodesics for the Hammersley model with random weights ALEA Lat. Am. J. Probab. Math. Stat. 2011 163 175
[6] , , , Greedy lattice animals. I. Upper bounds Ann. Appl. Probab. 1993 1151 1169
[7] , An introduction to the theory of point processes. Vol. I 2003
[8] Aubry-Mather theory and periodic solutions of the forced Burgers equation Comm. Pure Appl. Math. 1999 811 828
[9] , , , Invariant measures for Burgers equation with stochastic forcing Ann. of Math. (2) 2000 877 960
[10] , Greedy lattice animals. II. Linear growth Ann. Appl. Probab. 1994 76 107
[11] , , , Viscosity limit of stationary distributions for the random forced Burgers equation Mosc. Math. J. 2005
[12] , Random Burgers equation and Lagrangian systems in non-compact domains Nonlinearity 2003 819 842
[13] , Euclidean models of first-passage percolation Probab. Theory Related Fields 1997 153 170
[14] , From greedy lattice animals to Euclidean first-passage percolation 1999 107 119
[15] , Geodesics and spanning trees for Euclidean first-passage percolation Ann. Probab. 2001 577 623
[16] , Burgers turbulence and random Lagrangian systems Comm. Math. Phys. 2003 377 428
[17] Transversal fluctuations for increasing subsequences on the plane Probab. Theory Related Fields 2000 445 456
[18] On the speed of convergence in first-passage percolation Ann. Appl. Probab. 1993 296 338
[19] Ergodic theorems 1985
[20] Generalized solutions of Hamilton-Jacobi equations 1982
[21] A surface view of first-passage percolation 1995 1017 1023
[22] Optimal transport 2009
[23] Asymptotic behaviour of semi-infinite geodesics for maximal increasing subsequences in the plane 2002 205 226
Cité par Sources :