Space-time stationary solutions for the Burgers equation
Journal of the American Mathematical Society, Tome 27 (2014) no. 1, pp. 193-238

Voir la notice de l'article provenant de la source American Mathematical Society

We construct space-time stationary solutions of the $1$D Burgers equation with random forcing in the absence of periodicity or any other compactness assumptions. More precisely, for the forcing given by a homogeneous Poisson point field in space-time we prove that there is a unique global solution with any prescribed average velocity. These global solutions serve as one-point random attractors for the infinite-dimensional dynamical system associated with solutions to the Cauchy problem. The probability distribution of the global solutions defines a stationary distribution for the corresponding Markov process. We describe a broad class of initial Cauchy data for which the distribution of the Markov process converges to the above stationary distribution. Our construction of the global solutions is based on a study of the field of action-minimizing curves. We prove that for an arbitrary value of the average velocity, with probability 1 there exists a unique field of action-minimizing curves initiated at all of the Poisson points. Moreover, action-minimizing curves corresponding to different starting points merge with each other in finite time.
DOI : 10.1090/S0894-0347-2013-00773-0

Bakhtin, Yuri 1 ; Cator, Eric 2 ; Khanin, Konstantin 3

1 School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, Georgia 30332-0160
2 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
3 Department of Mathematics, University of Toronto, 40 St George Street, Toronto, Ontario, M5S 2E4, Canada
@article{10_1090_S0894_0347_2013_00773_0,
     author = {Bakhtin, Yuri and Cator, Eric and Khanin, Konstantin},
     title = {Space-time stationary solutions for the {Burgers} equation},
     journal = {Journal of the American Mathematical Society},
     pages = {193--238},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2014},
     doi = {10.1090/S0894-0347-2013-00773-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00773-0/}
}
TY  - JOUR
AU  - Bakhtin, Yuri
AU  - Cator, Eric
AU  - Khanin, Konstantin
TI  - Space-time stationary solutions for the Burgers equation
JO  - Journal of the American Mathematical Society
PY  - 2014
SP  - 193
EP  - 238
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00773-0/
DO  - 10.1090/S0894-0347-2013-00773-0
ID  - 10_1090_S0894_0347_2013_00773_0
ER  - 
%0 Journal Article
%A Bakhtin, Yuri
%A Cator, Eric
%A Khanin, Konstantin
%T Space-time stationary solutions for the Burgers equation
%J Journal of the American Mathematical Society
%D 2014
%P 193-238
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00773-0/
%R 10.1090/S0894-0347-2013-00773-0
%F 10_1090_S0894_0347_2013_00773_0
Bakhtin, Yuri; Cator, Eric; Khanin, Konstantin. Space-time stationary solutions for the Burgers equation. Journal of the American Mathematical Society, Tome 27 (2014) no. 1, pp. 193-238. doi: 10.1090/S0894-0347-2013-00773-0

[1] Aldous, D., Diaconis, P. Hammersley’s interacting particle process and longest increasing subsequences Probab. Theory Related Fields 1995 199 213

[2] Arnold, Ludwig Random dynamical systems 1998

[3] Bakhtin, Yuri Burgers equation with random boundary conditions Proc. Amer. Math. Soc. 2007 2257 2262

[4] Cator, Eric, Pimentel, Leandro P. R. Busemann functions and equilibrium measures in last passage percolation models Probab. Theory Related Fields 2012 89 125

[5] Cator, Eric, Pimentel, Leandro P. R. A shape theorem and semi-infinite geodesics for the Hammersley model with random weights ALEA Lat. Am. J. Probab. Math. Stat. 2011 163 175

[6] Cox, J. Theodore, Gandolfi, Alberto, Griffin, Philip S., Kesten, Harry Greedy lattice animals. I. Upper bounds Ann. Appl. Probab. 1993 1151 1169

[7] Daley, D. J., Vere-Jones, D. An introduction to the theory of point processes. Vol. I 2003

[8] E, Weinan Aubry-Mather theory and periodic solutions of the forced Burgers equation Comm. Pure Appl. Math. 1999 811 828

[9] E, Weinan, Khanin, K., Mazel, A., Sinai, Ya. Invariant measures for Burgers equation with stochastic forcing Ann. of Math. (2) 2000 877 960

[10] Gandolfi, Alberto, Kesten, Harry Greedy lattice animals. II. Linear growth Ann. Appl. Probab. 1994 76 107

[11] Gomes, Diogo, Iturriaga, Renato, Khanin, Konstantin, Padilla, Pablo Viscosity limit of stationary distributions for the random forced Burgers equation Mosc. Math. J. 2005

[12] Hoang, Viet Ha, Khanin, Konstantin Random Burgers equation and Lagrangian systems in non-compact domains Nonlinearity 2003 819 842

[13] Howard, C. Douglas, Newman, Charles M. Euclidean models of first-passage percolation Probab. Theory Related Fields 1997 153 170

[14] Howard, C. Douglas, Newman, Charles M. From greedy lattice animals to Euclidean first-passage percolation 1999 107 119

[15] Howard, C. Douglas, Newman, Charles M. Geodesics and spanning trees for Euclidean first-passage percolation Ann. Probab. 2001 577 623

[16] Iturriaga, R., Khanin, K. Burgers turbulence and random Lagrangian systems Comm. Math. Phys. 2003 377 428

[17] Johansson, Kurt Transversal fluctuations for increasing subsequences on the plane Probab. Theory Related Fields 2000 445 456

[18] Kesten, Harry On the speed of convergence in first-passage percolation Ann. Appl. Probab. 1993 296 338

[19] Krengel, Ulrich Ergodic theorems 1985

[20] Lions, Pierre-Louis Generalized solutions of Hamilton-Jacobi equations 1982

[21] Newman, Charles M. A surface view of first-passage percolation 1995 1017 1023

[22] Villani, Cã©Dric Optimal transport 2009

[23] Wã¼Thrich, Mario V. Asymptotic behaviour of semi-infinite geodesics for maximal increasing subsequences in the plane 2002 205 226

Cité par Sources :