Homogenization of elliptic systems with Neumann boundary conditions
Journal of the American Mathematical Society, Tome 26 (2013) no. 4, pp. 901-937 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

For a family of second-order elliptic systems with rapidly oscillating periodic coefficients in a $C^{1,\alpha }$ domain, we establish uniform $W^{1,p}$ estimates, Lipschitz estimates, and nontangential maximal function estimates on solutions with Neumann boundary conditions.
DOI : 10.1090/S0894-0347-2013-00769-9

Kenig, Carlos 1 ; Lin, Fanghua 2 ; Shen, Zhongwei 3

1 Department of Mathematics, University of Chicago, Chicago, Illinois 60637
2 Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
3 Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506
@article{10_1090_S0894_0347_2013_00769_9,
     author = {Kenig, Carlos and Lin, Fanghua and Shen, Zhongwei},
     title = {Homogenization of elliptic systems with {Neumann} boundary conditions},
     journal = {Journal of the American Mathematical Society},
     pages = {901--937},
     year = {2013},
     volume = {26},
     number = {4},
     doi = {10.1090/S0894-0347-2013-00769-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00769-9/}
}
TY  - JOUR
AU  - Kenig, Carlos
AU  - Lin, Fanghua
AU  - Shen, Zhongwei
TI  - Homogenization of elliptic systems with Neumann boundary conditions
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 901
EP  - 937
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00769-9/
DO  - 10.1090/S0894-0347-2013-00769-9
ID  - 10_1090_S0894_0347_2013_00769_9
ER  - 
%0 Journal Article
%A Kenig, Carlos
%A Lin, Fanghua
%A Shen, Zhongwei
%T Homogenization of elliptic systems with Neumann boundary conditions
%J Journal of the American Mathematical Society
%D 2013
%P 901-937
%V 26
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00769-9/
%R 10.1090/S0894-0347-2013-00769-9
%F 10_1090_S0894_0347_2013_00769_9
Kenig, Carlos; Lin, Fanghua; Shen, Zhongwei. Homogenization of elliptic systems with Neumann boundary conditions. Journal of the American Mathematical Society, Tome 26 (2013) no. 4, pp. 901-937. doi: 10.1090/S0894-0347-2013-00769-9

[1] Agmon, S., Douglis, A., Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I Comm. Pure Appl. Math. 1959 623 727

[2] Agmon, S., Douglis, A., Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II Comm. Pure Appl. Math. 1964 35 92

[3] Avellaneda, Marco, Lin, Fang-Hua Compactness methods in the theory of homogenization Comm. Pure Appl. Math. 1987 803 847

[4] Avellaneda, Marco, Lin, Fang-Hua Homogenization of elliptic problems with 𝐿^{𝑝} boundary data Appl. Math. Optim. 1987 93 107

[5] Avellaneda, Marco, Lin, Fang-Hua Compactness methods in the theory of homogenization. II. Equations in nondivergence form Comm. Pure Appl. Math. 1989 139 172

[6] Avellaneda, Marco, Lin, Fang-Hua Homogenization of Poisson’s kernel and applications to boundary control J. Math. Pures Appl. (9) 1989 1 29

[7] Avellaneda, M., Lin, Fang-Hua 𝐿^{𝑝} bounds on singular integrals in homogenization Comm. Pure Appl. Math. 1991 897 910

[8] Bensoussan, Alain, Lions, Jacques-Louis, Papanicolaou, George Asymptotic analysis for periodic structures 1978

[9] Caffarelli, L. A., Peral, I. On 𝑊^{1,𝑝} estimates for elliptic equations in divergence form Comm. Pure Appl. Math. 1998 1 21

[10] Chechkin, G. A., Piatnitski, A. L., Shamaev, A. S. Homogenization 2007

[11] Dahlberg, Björn E. J., Kenig, Carlos E. Hardy spaces and the Neumann problem in 𝐿^{𝑝} for Laplace’s equation in Lipschitz domains Ann. of Math. (2) 1987 437 465

[12] Ter Elst, A. F. M., Robinson, Derek W., Sikora, Adam On second-order periodic elliptic operators in divergence form Math. Z. 2001 569 637

[13] Fefferman, C., Stein, E. M. 𝐻^{𝑝} spaces of several variables Acta Math. 1972 137 193

[14] Geng, Jun 𝑊^{1,𝑝} estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains Adv. Math. 2012 2427 2448

[15] Giaquinta, Mariano Multiple integrals in the calculus of variations and nonlinear elliptic systems 1983

[16] Hofmann, Steve, Kim, Seick The Green function estimates for strongly elliptic systems of second order Manuscripta Math. 2007 139 172

[17] Jikov, V. V., Kozlov, S. M., Oleĭnik, O. A. Homogenization of differential operators and integral functionals 1994

[18] Kenig, Carlos E. Harmonic analysis techniques for second order elliptic boundary value problems 1994

[19] Kenig, Carlos E., Pipher, Jill The Neumann problem for elliptic equations with nonsmooth coefficients Invent. Math. 1993 447 509

[20] Kenig, Carlos E., Shen, Zhongwei Homogenization of elliptic boundary value problems in Lipschitz domains Math. Ann. 2011 867 917

[21] Kenig, Carlos E., Shen, Zhongwei Layer potential methods for elliptic homogenization problems Comm. Pure Appl. Math. 2011 1 44

[22] Kilty, Joel, Shen, Zhongwei The 𝐿^{𝑝} regularity problem on Lipschitz domains Trans. Amer. Math. Soc. 2011 1241 1264

[23] Kim, Aekyoung Shin, Shen, Zhongwei The Neumann problem in 𝐿^{𝑝} on Lipschitz and convex domains J. Funct. Anal. 2008 1817 1830

[24] Lions, J.-L. Asymptotic problems in distributed systems 1987 241 258

[25] Lions, J.-L. Exact controllability, stabilization and perturbations for distributed systems SIAM Rev. 1988 1 68

[26] Oleĭnik, O. A., Shamaev, A. S., Yosifian, G. A. Mathematical problems in elasticity and homogenization 1992

[27] Shen, Zhongwei Bounds of Riesz transforms on 𝐿^{𝑝} spaces for second order elliptic operators Ann. Inst. Fourier (Grenoble) 2005 173 197

[28] Shen, Zhongwei Necessary and sufficient conditions for the solvability of the 𝐿^{𝑝} Dirichlet problem on Lipschitz domains Math. Ann. 2006 697 725

[29] Shen, Zhongwei The 𝐿^{𝑝} boundary value problems on Lipschitz domains Adv. Math. 2007 212 254

[30] Taylor, Michael E. Tools for PDE 2000

[31] Verchota, Gregory Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains J. Funct. Anal. 1984 572 611

Cité par Sources :