The Hilbert–Smith conjecture for three-manifolds
Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 879-899

Voir la notice de l'article provenant de la source American Mathematical Society

We show that every locally compact group which acts faithfully on a connected three-manifold is a Lie group. By known reductions, it suffices to show that there is no faithful action of $\mathbb Z_p$ (the $p$-adic integers) on a connected three-manifold. If $\mathbb Z_p$ acts faithfully on $M^3$, we find an interesting $\mathbb Z_p$-invariant open set $U\subseteq M$ with $H_2(U)=\mathbb Z$ and analyze the incompressible surfaces in $U$ representing a generator of $H_2(U)$. It turns out that there must be one such incompressible surface, say $F$, whose isotopy class is fixed by $\mathbb Z_p$. An analysis of the resulting homomorphism $\mathbb Z_p\to \operatorname {MCG}(F)$ gives the desired contradiction. The approach is local on $M$.
DOI : 10.1090/S0894-0347-2013-00766-3

Pardon, John 1

1 Department of Mathematics, Stanford University, Stanford, California 94305
@article{10_1090_S0894_0347_2013_00766_3,
     author = {Pardon, John},
     title = {The {Hilbert\^a€“Smith} conjecture for three-manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {879--899},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2013},
     doi = {10.1090/S0894-0347-2013-00766-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00766-3/}
}
TY  - JOUR
AU  - Pardon, John
TI  - The Hilbert–Smith conjecture for three-manifolds
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 879
EP  - 899
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00766-3/
DO  - 10.1090/S0894-0347-2013-00766-3
ID  - 10_1090_S0894_0347_2013_00766_3
ER  - 
%0 Journal Article
%A Pardon, John
%T The Hilbert–Smith conjecture for three-manifolds
%J Journal of the American Mathematical Society
%D 2013
%P 879-899
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2013-00766-3/
%R 10.1090/S0894-0347-2013-00766-3
%F 10_1090_S0894_0347_2013_00766_3
Pardon, John. The Hilbert–Smith conjecture for three-manifolds. Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 879-899. doi: 10.1090/S0894-0347-2013-00766-3

[1] Bing, R. H. An alternative proof that 3-manifolds can be triangulated Ann. of Math. (2) 1959 37 65

[2] Bochner, Salomon, Montgomery, Deane Locally compact groups of differentiable transformations Ann. of Math. (2) 1946 639 653

[3] Chen, Yu Qing, Glover, Henry H., Jensen, Craig A. Prime order subgroups of mapping class groups JP J. Geom. Topol. 2011 87 99

[4] Dress, Andreas Newman’s theorems on transformation groups Topology 1969 203 207

[5] Freedman, Michael, Hass, Joel, Scott, Peter Least area incompressible surfaces in 3-manifolds Invent. Math. 1983 609 642

[6] Gleason, A. M. The structure of locally compact groups Duke Math. J. 1951 85 104

[7] Gleason, Andrew M. Groups without small subgroups Ann. of Math. (2) 1952 193 212

[8] Gottschalk, W. H. Minimal sets: an introduction to topological dynamics Bull. Amer. Math. Soc. 1958 336 351

[9] Gulliver, Robert D., Ii Regularity of minimizing surfaces of prescribed mean curvature Ann. of Math. (2) 1973 275 305

[10] Hamilton, A. J. S. The triangulation of 3-manifolds Quart. J. Math. Oxford Ser. (2) 1976 63 70

[11] Jaco, William, Rubinstein, J. Hyam PL minimal surfaces in 3-manifolds J. Differential Geom. 1988 493 524

[12] Kakimizu, Osamu Finding disjoint incompressible spanning surfaces for a link Hiroshima Math. J. 1992 225 236

[13] Kerckhoff, Steven P. The Nielsen realization problem Ann. of Math. (2) 1983 235 265

[14] Kirby, Robion C., Siebenmann, Laurence C. Foundational essays on topological manifolds, smoothings, and triangulations 1977

[15] Lee, Joo Sung Totally disconnected groups, 𝑝-adic groups and the Hilbert-Smith conjecture Commun. Korean Math. Soc. 1997 691 699

[16] Maleshich, ĬOzhe The Hilbert-Smith conjecture for Hölder actions Uspekhi Mat. Nauk 1997 173 174

[17] Martin, Gaven J. The Hilbert-Smith conjecture for quasiconformal actions Electron. Res. Announc. Amer. Math. Soc. 1999 66 70

[18] Mj, Mahan Pattern rigidity and the Hilbert-Smith conjecture Geom. Topol. 2012 1205 1246

[19] Moise, Edwin E. Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung Ann. of Math. (2) 1952 96 114

[20] Montgomery, Deane, Zippin, Leo Small subgroups of finite-dimensional groups Ann. of Math. (2) 1952 213 241

[21] Montgomery, Deane, Zippin, Leo Topological transformation groups 1955

[22] Nielsen, Jakob Abbildungsklassen endlicher Ordnung Acta Math. 1943 23 115

[23] Osserman, Robert A survey of minimal surfaces 1969

[24] Osserman, Robert A proof of the regularity everywhere of the classical solution to Plateau’s problem Ann. of Math. (2) 1970 550 569

[25] Papakyriakopoulos, C. D. On Dehn’s lemma and the asphericity of knots Ann. of Math. (2) 1957 1 26

[26] Przytycki, Piotr, Schultens, Jennifer Contractibility of the Kakimizu complex and symmetric Seifert surfaces Trans. Amer. Math. Soc. 2012 1489 1508

[27] Raymond, Frank, Williams, R. F. Examples of 𝑝-adic transformation groups Ann. of Math. (2) 1963 92 106

[28] Repov , Du An, Cì†Epin, Evgenij A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps Math. Ann. 1997 361 364

[29] Sacks, J., Uhlenbeck, K. The existence of minimal immersions of 2-spheres Ann. of Math. (2) 1981 1 24

[30] Sacks, J., Uhlenbeck, K. Minimal immersions of closed Riemann surfaces Trans. Amer. Math. Soc. 1982 639 652

[31] Schoen, R., Yau, Shing Tung Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature Ann. of Math. (2) 1979 127 142

[32] Schultens, Jennifer The Kakimizu complex is simply connected J. Topol. 2010 883 900

[33] Smith, P. A. Transformations of finite period. III. Newman’s theorem Ann. of Math. (2) 1941 446 458

[34] Spanier, Edwin H. Cohomology theory for general spaces Ann. of Math. (2) 1948 407 427

[35] Steenrod, Norman E. Universal Homology Groups Amer. J. Math. 1936 661 701

[36] Symonds, Peter The cohomology representation of an action of 𝐶_{𝑝} on a surface Trans. Amer. Math. Soc. 1988 389 400

[37] Thurston, William P. On the geometry and dynamics of diffeomorphisms of surfaces Bull. Amer. Math. Soc. (N.S.) 1988 417 431

[38] Waldhausen, Friedhelm On irreducible 3-manifolds which are sufficiently large Ann. of Math. (2) 1968 56 88

[39] Walsh, John J. Light open and open mappings on manifolds. II Trans. Amer. Math. Soc. 1976 271 284

[40] Wilson, David Open mappings on manifolds and a counterexample to the Whyburn conjecture Duke Math. J. 1973 705 716

[41] Yamabe, Hidehiko On the conjecture of Iwasawa and Gleason Ann. of Math. (2) 1953 48 54

[42] Yamabe, Hidehiko A generalization of a theorem of Gleason Ann. of Math. (2) 1953 351 365

[43] Yang, Chung-Tao 𝑝-adic transformation groups Michigan Math. J. 1960 201 218

Cité par Sources :