Voir la notice de l'article provenant de la source American Mathematical Society
Pach, János 1 ; Tardos, Gábor 2
@article{10_1090_S0894_0347_2012_00759_0,
     author = {Pach, J\~A{\textexclamdown}nos and Tardos, G\~A{\textexclamdown}bor},
     title = {Tight lower bounds for the size of epsilon-nets},
     journal = {Journal of the American Mathematical Society},
     pages = {645--658},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2013},
     doi = {10.1090/S0894-0347-2012-00759-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00759-0/}
}
                      
                      
                    TY - JOUR AU - Pach, János AU - Tardos, Gábor TI - Tight lower bounds for the size of epsilon-nets JO - Journal of the American Mathematical Society PY - 2013 SP - 645 EP - 658 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00759-0/ DO - 10.1090/S0894-0347-2012-00759-0 ID - 10_1090_S0894_0347_2012_00759_0 ER -
%0 Journal Article %A Pach, János %A Tardos, Gábor %T Tight lower bounds for the size of epsilon-nets %J Journal of the American Mathematical Society %D 2013 %P 645-658 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00759-0/ %R 10.1090/S0894-0347-2012-00759-0 %F 10_1090_S0894_0347_2012_00759_0
Pach, János; Tardos, Gábor. Tight lower bounds for the size of epsilon-nets. Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 645-658. doi: 10.1090/S0894-0347-2012-00759-0
[1] A non-linear lower bound for planar epsilon-nets Discrete Comput. Geom. 2012 235 244
[2] , , Small-size ð-nets for axis-parallel rectangles and boxes SIAM J. Comput. 2010 3248 3282
[3] , Almost optimal set covers in finite VC-dimension Discrete Comput. Geom. 1995 463 479
[4] The discrepancy method 2000
[5] , , , Delaunay graphs of point sets in the plane with respect to axis-parallel rectangles Random Structures Algorithms 2009 11 23
[6] , Improved approximation algorithms for geometric set cover Discrete Comput. Geom. 2007 43 58
[7] , , Hitting sets when the VC-dimension is small Inform. Process. Lett. 2005 358 362
[8] A note about weak ð-nets for axis-parallel boxes in ð-space Inform. Process. Lett. 2010 835 840
[9] , , Improved bound for the union of fat triangles 2011 1778 1785
[10] , A density version of the Hales-Jewett theorem for ð Discrete Math. 1989 227 241
[11] , A density version of the Hales-Jewett theorem J. Anal. Math. 1991 64 119
[12] , Decomposing coverings and the planar sensor cover problem 2009 159 168
[13] , Regularity and positional games Trans. Amer. Math. Soc. 1963 222 229
[14] , ð-nets and simplex range queries Discrete Comput. Geom. 1987 127 151
[15] , , , Efficient colored orthogonal range counting SIAM J. Comput. 2008 982 1011
[16] , , Almost tight bounds for ð-nets Discrete Comput. Geom. 1992 163 173
[17] Reporting points in halfspaces Comput. Geom. 1992 169 186
[18] , Combinatorial geometry 1995
[19] , Coloring axis-parallel rectangles J. Combin. Theory Ser. A 2010 776 782
[20] , Tight lower bounds for the size of epsilon-nets (extended abstract) 2011 458 463
[21] , , Indecomposable coverings Canad. Math. Bull. 2009 451 463
[22] A new proof of the density Hales-Jewett theorem Ann. of Math. (2) 2012 1283 1327
[23] Density Hales-Jewett and Moser numbers 2010 689 753
[24] , New existence proofs for ð-nets 2008 199 207
Cité par Sources :
