Equidistribution and counting for orbits of geometrically finite hyperbolic groups
Journal of the American Mathematical Society, Tome 26 (2013) no. 2, pp. 511-562

Voir la notice de l'article provenant de la source American Mathematical Society

Let $G$ be the identity component of $\mathrm {SO}(n,1)$, $n\ge 2$, acting linearly on a finite-dimensional real vector space $V$. Consider a vector $w_0\in V$ such that the stabilizer of $w_0$ is a symmetric subgroup of $G$ or the stabilizer of the line $\mathbb {R} w_0$ is a parabolic subgroup of $G$. For any non-elementary discrete subgroup $\Gamma$ of $G$ with its orbit $w_0\Gamma$ discrete, we compute an asymptotic formula (as $T\to \infty$) for the number of points in $w_0\Gamma$ of norm at most $T$, provided that the Bowen-Margulis-Sullivan measure on $\mathrm {T}^1(\Gamma \backslash \mathbb {H}^n)$ and the $\Gamma$-skinning size of $w_0$ are finite. The main ergodic ingredient in our approach is the description for the limiting distribution of the orthogonal translates of a totally geodesically immersed closed submanifold of $\Gamma \backslash \mathbb {H}^n$. We also give a criterion on the finiteness of the $\Gamma$-skinning size of $w_0$ for $\Gamma$ geometrically finite.
DOI : 10.1090/S0894-0347-2012-00749-8

Oh, Hee 1 ; Shah, Nimish 2

1 Department of Mathematics, Brown University, Providence, Rhode Island 02912 and Korea Institute for Advanced Study, Seoul, Korea
2 Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
@article{10_1090_S0894_0347_2012_00749_8,
     author = {Oh, Hee and Shah, Nimish},
     title = {Equidistribution and counting for orbits of geometrically finite hyperbolic groups},
     journal = {Journal of the American Mathematical Society},
     pages = {511--562},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2013},
     doi = {10.1090/S0894-0347-2012-00749-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00749-8/}
}
TY  - JOUR
AU  - Oh, Hee
AU  - Shah, Nimish
TI  - Equidistribution and counting for orbits of geometrically finite hyperbolic groups
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 511
EP  - 562
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00749-8/
DO  - 10.1090/S0894-0347-2012-00749-8
ID  - 10_1090_S0894_0347_2012_00749_8
ER  - 
%0 Journal Article
%A Oh, Hee
%A Shah, Nimish
%T Equidistribution and counting for orbits of geometrically finite hyperbolic groups
%J Journal of the American Mathematical Society
%D 2013
%P 511-562
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00749-8/
%R 10.1090/S0894-0347-2012-00749-8
%F 10_1090_S0894_0347_2012_00749_8
Oh, Hee; Shah, Nimish. Equidistribution and counting for orbits of geometrically finite hyperbolic groups. Journal of the American Mathematical Society, Tome 26 (2013) no. 2, pp. 511-562. doi: 10.1090/S0894-0347-2012-00749-8

[1] Babillot, Martine On the mixing property for hyperbolic systems Israel J. Math. 2002 61 76

[2] Beardon, Alan F. The geometry of discrete groups 1983

[3] Bowditch, B. H. Geometrical finiteness for hyperbolic groups J. Funct. Anal. 1993 245 317

[4] Bowen, Rufus Periodic points and measures for Axiom 𝐴 diffeomorphisms Trans. Amer. Math. Soc. 1971 377 397

[5] Burger, Marc Horocycle flow on geometrically finite surfaces Duke Math. J. 1990 779 803

[6] Dal’Bo, Franã§Oise Topologie du feuilletage fortement stable Ann. Inst. Fourier (Grenoble) 2000 981 993

[7] Dal’Bo, Franã§Oise, Otal, Jean-Pierre, Peignã©, Marc Séries de Poincaré des groupes géométriquement finis Israel J. Math. 2000 109 124

[8] Duke, W., Rudnick, Z., Sarnak, P. Density of integer points on affine homogeneous varieties Duke Math. J. 1993 143 179

[9] Eskin, Alex, Mcmullen, Curt Mixing, counting, and equidistribution in Lie groups Duke Math. J. 1993 181 209

[10] Flaminio, L., Spatzier, R. J. Geometrically finite groups, Patterson-Sullivan measures and Ratner’s rigidity theorem Invent. Math. 1990 601 626

[11] Gorodnik, Alexander, Oh, Hee Orbits of discrete subgroups on a symmetric space and the Furstenberg boundary Duke Math. J. 2007 483 525

[12] Gorodnik, Alexander, Oh, Hee, Shah, Nimish Integral points on symmetric varieties and Satake compactifications Amer. J. Math. 2009 1 57

[13] Gorodnik, Alexander, Oh, Hee, Shah, Nimish Strong wavefront lemma and counting lattice points in sectors Israel J. Math. 2010 419 444

[14] Kleinbock, D. Y., Margulis, G. A. Bounded orbits of nonquasiunipotent flows on homogeneous spaces 1996 141 172

[15] Kontorovich, Alex, Oh, Hee Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds J. Amer. Math. Soc. 2011 603 648

[16] Lalley, Steven P. Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits Acta Math. 1989 1 55

[17] Lax, Peter D., Phillips, Ralph S. The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces J. Functional Analysis 1982 280 350

[18] Margulis, Grigoriy A. On some aspects of the theory of Anosov systems 2004

[19] Maskit, Bernard Kleinian groups 1988

[20] Oh, Hee Dynamics on geometrically finite hyperbolic manifolds with applications to Apollonian circle packings and beyond 2010 1308 1331

[21] Oh, Hee, Shah, Nimish The asymptotic distribution of circles in the orbits of Kleinian groups Invent. Math. 2012 1 35

[22] Patterson, S. J. The limit set of a Fuchsian group Acta Math. 1976 241 273

[23] Peignã©, Marc On the Patterson-Sullivan measure of some discrete group of isometries Israel J. Math. 2003 77 88

[24] Randol, Burton The behavior under projection of dilating sets in a covering space Trans. Amer. Math. Soc. 1984 855 859

[25] Raghunathan, M. S. Discrete subgroups of Lie groups 1972

[26] Ratner, Marina On Raghunathan’s measure conjecture Ann. of Math. (2) 1991 545 607

[27] Roblin, Thomas Ergodicité et équidistribution en courbure négative Mém. Soc. Math. Fr. (N.S.) 2003

[28] Rudolph, Daniel J. Ergodic behaviour of Sullivan’s geometric measure on a geometrically finite hyperbolic manifold Ergodic Theory Dynam. Systems 1982

[29] Sarnak, Peter Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series Comm. Pure Appl. Math. 1981 719 739

[30] Schapira, Barbara Equidistribution of the horocycles of a geometrically finite surface Int. Math. Res. Not. 2005 2447 2471

[31] Schlichtkrull, Henrik Hyperfunctions and harmonic analysis on symmetric spaces 1984

[32] Sullivan, Dennis The density at infinity of a discrete group of hyperbolic motions Inst. Hautes Études Sci. Publ. Math. 1979 171 202

[33] Sullivan, Dennis Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups Acta Math. 1984 259 277

[34] Yau, Shing Tung Harmonic functions on complete Riemannian manifolds Comm. Pure Appl. Math. 1975 201 228

Cité par Sources :