The logarithmic Minkowski problem
Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 831-852

Voir la notice de l'article provenant de la source American Mathematical Society

In analogy with the classical Minkowski problem, necessary and sufficient conditions are given to assure that a given measure on the unit sphere is the cone-volume measure of the unit ball of a finite-dimensional Banach space.
DOI : 10.1090/S0894-0347-2012-00741-3

Böröczky, Károly 1 ; Lutwak, Erwin 2 ; Yang, Deane 2 ; Zhang, Gaoyong 2

1 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
2 Department of Mathematics, Polytechnic Institute of New York University, Brooklyn, New York 11201
@article{10_1090_S0894_0347_2012_00741_3,
     author = {B\~A{\textparagraph}r\~A{\textparagraph}czky, K\~A{\textexclamdown}roly and Lutwak, Erwin and Yang, Deane and Zhang, Gaoyong},
     title = {The logarithmic {Minkowski} problem},
     journal = {Journal of the American Mathematical Society},
     pages = {831--852},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2013},
     doi = {10.1090/S0894-0347-2012-00741-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00741-3/}
}
TY  - JOUR
AU  - Böröczky, Károly
AU  - Lutwak, Erwin
AU  - Yang, Deane
AU  - Zhang, Gaoyong
TI  - The logarithmic Minkowski problem
JO  - Journal of the American Mathematical Society
PY  - 2013
SP  - 831
EP  - 852
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00741-3/
DO  - 10.1090/S0894-0347-2012-00741-3
ID  - 10_1090_S0894_0347_2012_00741_3
ER  - 
%0 Journal Article
%A Böröczky, Károly
%A Lutwak, Erwin
%A Yang, Deane
%A Zhang, Gaoyong
%T The logarithmic Minkowski problem
%J Journal of the American Mathematical Society
%D 2013
%P 831-852
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00741-3/
%R 10.1090/S0894-0347-2012-00741-3
%F 10_1090_S0894_0347_2012_00741_3
Böröczky, Károly; Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong. The logarithmic Minkowski problem. Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 831-852. doi: 10.1090/S0894-0347-2012-00741-3

[1] Alexandroff, A. Existence and uniqueness of a convex surface with a given integral curvature C. R. (Doklady) Acad. Sci. URSS (N.S.) 1942 131 134

[2] Andrews, Ben Gauss curvature flow: the fate of the rolling stones Invent. Math. 1999 151 161

[3] Andrews, Ben Classification of limiting shapes for isotropic curve flows J. Amer. Math. Soc. 2003 443 459

[4] Barthe, Franck, Guã©Don, Olivier, Mendelson, Shahar, Naor, Assaf A probabilistic approach to the geometry of the 𝑙ⁿ_{𝑝}-ball Ann. Probab. 2005 480 513

[5] Caffarelli, Luis A. Interior 𝑊^{2,𝑝} estimates for solutions of the Monge-Ampère equation Ann. of Math. (2) 1990 135 150

[6] Campi, S., Gronchi, P. The 𝐿^{𝑝}-Busemann-Petty centroid inequality Adv. Math. 2002 128 141

[7] Chen, Wenxiong 𝐿_{𝑝} Minkowski problem with not necessarily positive data Adv. Math. 2006 77 89

[8] Cheng, Shiu Yuen, Yau, Shing Tung On the regularity of the solution of the 𝑛-dimensional Minkowski problem Comm. Pure Appl. Math. 1976 495 516

[9] Chou, Kai-Seng, Wang, Xu-Jia The 𝐿_{𝑝}-Minkowski problem and the Minkowski problem in centroaffine geometry Adv. Math. 2006 33 83

[10] Chow, Bennett Deforming convex hypersurfaces by the 𝑛th root of the Gaussian curvature J. Differential Geom. 1985 117 138

[11] Cianchi, Andrea, Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong Affine Moser-Trudinger and Morrey-Sobolev inequalities Calc. Var. Partial Differential Equations 2009 419 436

[12] Colesanti, Andrea, Fimiani, Michele The Minkowski problem for torsional rigidity Indiana Univ. Math. J. 2010 1013 1039

[13] Firey, William J. Shapes of worn stones Mathematika 1974 1 11

[14] Gage, M., Hamilton, R. S. The heat equation shrinking convex plane curves J. Differential Geom. 1986 69 96

[15] Gardner, Richard J. Geometric tomography 2006

[16] Gardner, R. J. The Brunn-Minkowski inequality Bull. Amer. Math. Soc. (N.S.) 2002 355 405

[17] Gardner, R. J., Zhang, Gaoyong Affine inequalities and radial mean bodies Amer. J. Math. 1998 505 528

[18] Gromov, M., Milman, V. D. Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces Compositio Math. 1987 263 282

[19] Gruber, Peter M. Convex and discrete geometry 2007

[20] Guan, Bo, Guan, Pengfei Convex hypersurfaces of prescribed curvatures Ann. of Math. (2) 2002 655 673

[21] Guan, Pengfei, Ma, Xi-Nan The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation Invent. Math. 2003 553 577

[22] Haberl, Christoph, Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong The even Orlicz Minkowski problem Adv. Math. 2010 2485 2510

[23] Haberl, Christoph, Schuster, Franz E. General 𝐿_{𝑝} affine isoperimetric inequalities J. Differential Geom. 2009 1 26

[24] Haberl, Christoph, Schuster, Franz E. Asymmetric affine 𝐿_{𝑝} Sobolev inequalities J. Funct. Anal. 2009 641 658

[25] He, Binwu, Leng, Gangsong, Li, Kanghai Projection problems for symmetric polytopes Adv. Math. 2006 73 90

[26] Hu, Changqing, Ma, Xi-Nan, Shen, Chunli On the Christoffel-Minkowski problem of Firey’s 𝑝-sum Calc. Var. Partial Differential Equations 2004 137 155

[27] Hug, Daniel, Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong On the 𝐿_{𝑝} Minkowski problem for polytopes Discrete Comput. Geom. 2005 699 715

[28] Jerison, David A Minkowski problem for electrostatic capacity Acta Math. 1996 1 47

[29] Jiang, Mei-Yue Remarks on the 2-dimensional 𝐿_{𝑝}-Minkowski problem Adv. Nonlinear Stud. 2010 297 313

[30] John, Fritz Polar correspondence with respect to a convex region Duke Math. J. 1937 355 369

[31] Klain, Daniel A. The Minkowski problem for polytopes Adv. Math. 2004 270 288

[32] Lewy, Hans On differential geometry in the large. I. Minkowski’s problem Trans. Amer. Math. Soc. 1938 258 270

[33] Ludwig, Monika Ellipsoids and matrix-valued valuations Duke Math. J. 2003 159 188

[34] Ludwig, Monika General affine surface areas Adv. Math. 2010 2346 2360

[35] Ludwig, Monika, Reitzner, Matthias A classification of 𝑆𝐿(𝑛) invariant valuations Ann. of Math. (2) 2010 1219 1267

[36] Lutwak, Erwin The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem J. Differential Geom. 1993 131 150

[37] Lutwak, Erwin, Oliker, Vladimir On the regularity of solutions to a generalization of the Minkowski problem J. Differential Geom. 1995 227 246

[38] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong 𝐿_{𝑝} affine isoperimetric inequalities J. Differential Geom. 2000 111 132

[39] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong A new ellipsoid associated with convex bodies Duke Math. J. 2000 375 390

[40] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong The Cramer-Rao inequality for star bodies Duke Math. J. 2002 59 81

[41] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong Sharp affine 𝐿_{𝑝} Sobolev inequalities J. Differential Geom. 2002 17 38

[42] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong On the 𝐿_{𝑝}-Minkowski problem Trans. Amer. Math. Soc. 2004 4359 4370

[43] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong Volume inequalities for subspaces of 𝐿_{𝑝} J. Differential Geom. 2004 159 184

[44] Lutwak, Erwin, Yang, Deane, Zhang, Gaoyong Optimal Sobolev norms and the 𝐿^{𝑝} Minkowski problem Int. Math. Res. Not. 2006

[45] Lutwak, Erwin, Zhang, Gaoyong Blaschke-Santaló inequalities J. Differential Geom. 1997 1 16

[46] Naor, Assaf The surface measure and cone measure on the sphere of 𝑙_{𝑝}ⁿ Trans. Amer. Math. Soc. 2007 1045 1079

[47] Naor, Assaf, Romik, Dan Projecting the surface measure of the sphere of 𝓁_{𝓅}ⁿ Ann. Inst. H. Poincaré Probab. Statist. 2003 241 261

[48] Nirenberg, Louis The Weyl and Minkowski problems in differential geometry in the large Comm. Pure Appl. Math. 1953 337 394

[49] Paouris, G. Concentration of mass on convex bodies Geom. Funct. Anal. 2006 1021 1049

[50] Pogorelov, Aleksey Vasil′Yevich The Minkowski multidimensional problem 1978 106

[51] Schneider, Rolf Convex bodies: the Brunn-Minkowski theory 1993

[52] Stancu, Alina The discrete planar 𝐿₀-Minkowski problem Adv. Math. 2002 160 174

[53] Stancu, Alina On the number of solutions to the discrete two-dimensional 𝐿₀-Minkowski problem Adv. Math. 2003 290 323

[54] Thompson, A. C. Minkowski geometry 1996

[55] Tso, Kaising Deforming a hypersurface by its Gauss-Kronecker curvature Comm. Pure Appl. Math. 1985 867 882

[56] Umanskiy, Vladimir On solvability of two-dimensional 𝐿_{𝑝}-Minkowski problem Adv. Math. 2003 176 186

[57] Xiong, Ge Extremum problems for the cone volume functional of convex polytopes Adv. Math. 2010 3214 3228

[58] Zhang, Gaoyong The affine Sobolev inequality J. Differential Geom. 1999 183 202

Cité par Sources :