Voir la notice de l'article provenant de la source American Mathematical Society
Böröczky, Károly 1 ; Lutwak, Erwin 2 ; Yang, Deane 2 ; Zhang, Gaoyong 2
@article{10_1090_S0894_0347_2012_00741_3,
     author = {B\~A{\textparagraph}r\~A{\textparagraph}czky, K\~A{\textexclamdown}roly and Lutwak, Erwin and Yang, Deane and Zhang, Gaoyong},
     title = {The logarithmic {Minkowski} problem},
     journal = {Journal of the American Mathematical Society},
     pages = {831--852},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2013},
     doi = {10.1090/S0894-0347-2012-00741-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00741-3/}
}
                      
                      
                    TY - JOUR AU - Böröczky, Károly AU - Lutwak, Erwin AU - Yang, Deane AU - Zhang, Gaoyong TI - The logarithmic Minkowski problem JO - Journal of the American Mathematical Society PY - 2013 SP - 831 EP - 852 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00741-3/ DO - 10.1090/S0894-0347-2012-00741-3 ID - 10_1090_S0894_0347_2012_00741_3 ER -
%0 Journal Article %A Böröczky, Károly %A Lutwak, Erwin %A Yang, Deane %A Zhang, Gaoyong %T The logarithmic Minkowski problem %J Journal of the American Mathematical Society %D 2013 %P 831-852 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00741-3/ %R 10.1090/S0894-0347-2012-00741-3 %F 10_1090_S0894_0347_2012_00741_3
Böröczky, Károly; Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong. The logarithmic Minkowski problem. Journal of the American Mathematical Society, Tome 26 (2013) no. 3, pp. 831-852. doi: 10.1090/S0894-0347-2012-00741-3
[1] Existence and uniqueness of a convex surface with a given integral curvature C. R. (Doklady) Acad. Sci. URSS (N.S.) 1942 131 134
[2] Gauss curvature flow: the fate of the rolling stones Invent. Math. 1999 151 161
[3] Classification of limiting shapes for isotropic curve flows J. Amer. Math. Soc. 2003 443 459
[4] , , , A probabilistic approach to the geometry of the ðâ¿_{ð}-ball Ann. Probab. 2005 480 513
[5] Interior ð^{2,ð} estimates for solutions of the Monge-Ampère equation Ann. of Math. (2) 1990 135 150
[6] , The ð¿^{ð}-Busemann-Petty centroid inequality Adv. Math. 2002 128 141
[7] ð¿_{ð} Minkowski problem with not necessarily positive data Adv. Math. 2006 77 89
[8] , On the regularity of the solution of the ð-dimensional Minkowski problem Comm. Pure Appl. Math. 1976 495 516
[9] , The ð¿_{ð}-Minkowski problem and the Minkowski problem in centroaffine geometry Adv. Math. 2006 33 83
[10] Deforming convex hypersurfaces by the ðth root of the Gaussian curvature J. Differential Geom. 1985 117 138
[11] , , , Affine Moser-Trudinger and Morrey-Sobolev inequalities Calc. Var. Partial Differential Equations 2009 419 436
[12] , The Minkowski problem for torsional rigidity Indiana Univ. Math. J. 2010 1013 1039
[13] Shapes of worn stones Mathematika 1974 1 11
[14] , The heat equation shrinking convex plane curves J. Differential Geom. 1986 69 96
[15] Geometric tomography 2006
[16] The Brunn-Minkowski inequality Bull. Amer. Math. Soc. (N.S.) 2002 355 405
[17] , Affine inequalities and radial mean bodies Amer. J. Math. 1998 505 528
[18] , Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces Compositio Math. 1987 263 282
[19] Convex and discrete geometry 2007
[20] , Convex hypersurfaces of prescribed curvatures Ann. of Math. (2) 2002 655 673
[21] , The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation Invent. Math. 2003 553 577
[22] , , , The even Orlicz Minkowski problem Adv. Math. 2010 2485 2510
[23] , General ð¿_{ð} affine isoperimetric inequalities J. Differential Geom. 2009 1 26
[24] , Asymmetric affine ð¿_{ð} Sobolev inequalities J. Funct. Anal. 2009 641 658
[25] , , Projection problems for symmetric polytopes Adv. Math. 2006 73 90
[26] , , On the Christoffel-Minkowski problem of Fireyâs ð-sum Calc. Var. Partial Differential Equations 2004 137 155
[27] , , , On the ð¿_{ð} Minkowski problem for polytopes Discrete Comput. Geom. 2005 699 715
[28] A Minkowski problem for electrostatic capacity Acta Math. 1996 1 47
[29] Remarks on the 2-dimensional ð¿_{ð}-Minkowski problem Adv. Nonlinear Stud. 2010 297 313
[30] Polar correspondence with respect to a convex region Duke Math. J. 1937 355 369
[31] The Minkowski problem for polytopes Adv. Math. 2004 270 288
[32] On differential geometry in the large. I. Minkowskiâs problem Trans. Amer. Math. Soc. 1938 258 270
[33] Ellipsoids and matrix-valued valuations Duke Math. J. 2003 159 188
[34] General affine surface areas Adv. Math. 2010 2346 2360
[35] , A classification of ðð¿(ð) invariant valuations Ann. of Math. (2) 2010 1219 1267
[36] The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem J. Differential Geom. 1993 131 150
[37] , On the regularity of solutions to a generalization of the Minkowski problem J. Differential Geom. 1995 227 246
[38] , , ð¿_{ð} affine isoperimetric inequalities J. Differential Geom. 2000 111 132
[39] , , A new ellipsoid associated with convex bodies Duke Math. J. 2000 375 390
[40] , , The Cramer-Rao inequality for star bodies Duke Math. J. 2002 59 81
[41] , , Sharp affine ð¿_{ð} Sobolev inequalities J. Differential Geom. 2002 17 38
[42] , , On the ð¿_{ð}-Minkowski problem Trans. Amer. Math. Soc. 2004 4359 4370
[43] , , Volume inequalities for subspaces of ð¿_{ð} J. Differential Geom. 2004 159 184
[44] , , Optimal Sobolev norms and the ð¿^{ð} Minkowski problem Int. Math. Res. Not. 2006
[45] , Blaschke-Santaló inequalities J. Differential Geom. 1997 1 16
[46] The surface measure and cone measure on the sphere of ð_{ð}â¿ Trans. Amer. Math. Soc. 2007 1045 1079
[47] , Projecting the surface measure of the sphere of ð_{ð }â¿ Ann. Inst. H. Poincaré Probab. Statist. 2003 241 261
[48] The Weyl and Minkowski problems in differential geometry in the large Comm. Pure Appl. Math. 1953 337 394
[49] Concentration of mass on convex bodies Geom. Funct. Anal. 2006 1021 1049
[50] The Minkowski multidimensional problem 1978 106
[51] Convex bodies: the Brunn-Minkowski theory 1993
[52] The discrete planar ð¿â-Minkowski problem Adv. Math. 2002 160 174
[53] On the number of solutions to the discrete two-dimensional ð¿â-Minkowski problem Adv. Math. 2003 290 323
[54] Minkowski geometry 1996
[55] Deforming a hypersurface by its Gauss-Kronecker curvature Comm. Pure Appl. Math. 1985 867 882
[56] On solvability of two-dimensional ð¿_{ð}-Minkowski problem Adv. Math. 2003 176 186
[57] Extremum problems for the cone volume functional of convex polytopes Adv. Math. 2010 3214 3228
[58] The affine Sobolev inequality J. Differential Geom. 1999 183 202
Cité par Sources :
