Voir la notice de l'article provenant de la source American Mathematical Society
Lian, Zeng 1 ; Young, Lai-Sang 1
@article{10_1090_S0894_0347_2012_00734_6,
     author = {Lian, Zeng and Young, Lai-Sang},
     title = {Lyapunov exponents, periodic orbits, and horseshoes for semiflows on {Hilbert} spaces},
     journal = {Journal of the American Mathematical Society},
     pages = {637--665},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2012},
     doi = {10.1090/S0894-0347-2012-00734-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00734-6/}
}
                      
                      
                    TY - JOUR AU - Lian, Zeng AU - Young, Lai-Sang TI - Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces JO - Journal of the American Mathematical Society PY - 2012 SP - 637 EP - 665 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00734-6/ DO - 10.1090/S0894-0347-2012-00734-6 ID - 10_1090_S0894_0347_2012_00734_6 ER -
%0 Journal Article %A Lian, Zeng %A Young, Lai-Sang %T Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces %J Journal of the American Mathematical Society %D 2012 %P 637-665 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00734-6/ %R 10.1090/S0894-0347-2012-00734-6 %F 10_1090_S0894_0347_2012_00734_6
Lian, Zeng; Young, Lai-Sang. Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces. Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 637-665. doi: 10.1090/S0894-0347-2012-00734-6
[1] Geometric theory of semilinear parabolic equations 1981
[2] Lyapunov exponents, entropy and periodic orbits for diffeomorphisms Inst. Hautes Ãtudes Sci. Publ. Math. 1980 137 173
[3] Real and functional analysis 1993
[4] , The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesinâs entropy formula Ann. of Math. (2) 1985 509 539
[5] , Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space Mem. Amer. Math. Soc. 2010
[6] , Lyapunov exponents, periodic orbits and horseshoes for mappings of Hilbert spaces Ann. Henri Poincaré 2011 1081 1108
[7] Lyapounov exponents and stable manifolds for compact transformations 1983 522 577
[8] Characteristic Ljapunov exponents, and smooth ergodic theory Uspehi Mat. Nauk 1977
[9] An inequality for the entropy of differentiable maps Bol. Soc. Brasil. Mat. 1978 83 87
[10] Ergodic theory of differentiable dynamical systems Inst. Hautes Ãtudes Sci. Publ. Math. 1979 27 58
[11] Characteristic exponents and invariant manifolds in Hilbert space Ann. of Math. (2) 1982 243 290
[12] , Dynamics of evolutionary equations 2002
[13] Infinite-dimensional dynamical systems in mechanics and physics 1997
[14] Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension Ann. Inst. H. Poincaré Anal. Non Linéaire 1987 49 97
Cité par Sources :
