Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces
Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 637-665

Voir la notice de l'article provenant de la source American Mathematical Society

Two settings are considered: flows on finite dimensional Riemannian manifolds, and semiflows on Hilbert spaces with conditions consistent with those in systems defined by dissipative parabolic PDEs. Under certain assumptions on Lyapunov exponents and entropy, we prove the existence of geometric structures called horseshoes; this implies in particular the presence of infinitely many periodic solutions. For diffeomorphisms of compact manifolds, analogous results are due to A. Katok. Here we extend Katok’s results to (i) continuous time and (ii) infinite dimensions.
DOI : 10.1090/S0894-0347-2012-00734-6

Lian, Zeng 1 ; Young, Lai-Sang 1

1 Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012
@article{10_1090_S0894_0347_2012_00734_6,
     author = {Lian, Zeng and Young, Lai-Sang},
     title = {Lyapunov exponents, periodic orbits, and horseshoes for semiflows on {Hilbert} spaces},
     journal = {Journal of the American Mathematical Society},
     pages = {637--665},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2012},
     doi = {10.1090/S0894-0347-2012-00734-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00734-6/}
}
TY  - JOUR
AU  - Lian, Zeng
AU  - Young, Lai-Sang
TI  - Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 637
EP  - 665
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00734-6/
DO  - 10.1090/S0894-0347-2012-00734-6
ID  - 10_1090_S0894_0347_2012_00734_6
ER  - 
%0 Journal Article
%A Lian, Zeng
%A Young, Lai-Sang
%T Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces
%J Journal of the American Mathematical Society
%D 2012
%P 637-665
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00734-6/
%R 10.1090/S0894-0347-2012-00734-6
%F 10_1090_S0894_0347_2012_00734_6
Lian, Zeng; Young, Lai-Sang. Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces. Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 637-665. doi: 10.1090/S0894-0347-2012-00734-6

[1] Henry, Daniel Geometric theory of semilinear parabolic equations 1981

[2] Katok, A. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms Inst. Hautes Études Sci. Publ. Math. 1980 137 173

[3] Lang, Serge Real and functional analysis 1993

[4] Ledrappier, F., Young, L.-S. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula Ann. of Math. (2) 1985 509 539

[5] Lian, Zeng, Lu, Kening Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space Mem. Amer. Math. Soc. 2010

[6] Lian, Zeng, Young, Lai-Sang Lyapunov exponents, periodic orbits and horseshoes for mappings of Hilbert spaces Ann. Henri Poincaré 2011 1081 1108

[7] Maã±Ã©, Ricardo Lyapounov exponents and stable manifolds for compact transformations 1983 522 577

[8] Pesin, Ja. B. Characteristic Ljapunov exponents, and smooth ergodic theory Uspehi Mat. Nauk 1977

[9] Ruelle, David An inequality for the entropy of differentiable maps Bol. Soc. Brasil. Mat. 1978 83 87

[10] Ruelle, David Ergodic theory of differentiable dynamical systems Inst. Hautes Études Sci. Publ. Math. 1979 27 58

[11] Ruelle, David Characteristic exponents and invariant manifolds in Hilbert space Ann. of Math. (2) 1982 243 290

[12] Sell, George R., You, Yuncheng Dynamics of evolutionary equations 2002

[13] Temam, Roger Infinite-dimensional dynamical systems in mechanics and physics 1997

[14] Thieullen, P. Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension Ann. Inst. H. Poincaré Anal. Non Linéaire 1987 49 97

Cité par Sources :