Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs
Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 907-927

Voir la notice de l'article provenant de la source American Mathematical Society

The chromatic polynomial $\chi _G(q)$ of a graph $G$ counts the number of proper colorings of $G$. We give an affirmative answer to the conjecture of Read and Rota-Heron-Welsh that the absolute values of the coefficients of the chromatic polynomial form a log-concave sequence. The proof is obtained by identifying $\chi _G(q)$ with a sequence of numerical invariants of a projective hypersurface analogous to the Milnor number of a local analytic hypersurface. As a by-product of our approach, we obtain an analogue of Kouchnirenko’s theorem relating the Milnor number with the Newton polytope; we also characterize homology classes of $\mathbb {P}^n \times \mathbb {P}^m$ corresponding to subvarieties and answer a question posed by Trung-Verma.
DOI : 10.1090/S0894-0347-2012-00731-0

Huh, June 1, 2

1 Department of Mathematics, University of Illinois, Urbana, Illinois 61801
2 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
@article{10_1090_S0894_0347_2012_00731_0,
     author = {Huh, June},
     title = {Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs},
     journal = {Journal of the American Mathematical Society},
     pages = {907--927},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2012},
     doi = {10.1090/S0894-0347-2012-00731-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00731-0/}
}
TY  - JOUR
AU  - Huh, June
TI  - Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 907
EP  - 927
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00731-0/
DO  - 10.1090/S0894-0347-2012-00731-0
ID  - 10_1090_S0894_0347_2012_00731_0
ER  - 
%0 Journal Article
%A Huh, June
%T Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs
%J Journal of the American Mathematical Society
%D 2012
%P 907-927
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00731-0/
%R 10.1090/S0894-0347-2012-00731-0
%F 10_1090_S0894_0347_2012_00731_0
Huh, June. Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs. Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 907-927. doi: 10.1090/S0894-0347-2012-00731-0

[1] Aigner, Martin Whitney numbers 1987 139 160

[2] Aluffi, Paolo Computing characteristic classes of projective schemes J. Symbolic Comput. 2003 3 19

[3] Brenti, Francesco Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update 1994 71 89

[4] Bruns, Winfried, Herzog, Jã¼Rgen Cohen-Macaulay rings 1993

[5] Cox, David A., Little, John, O’Shea, Donal Using algebraic geometry 2005

[6] Dimca, Alexandru Singularities and topology of hypersurfaces 1992

[7] Dimca, Alexandru, Papadima, Stefan Hypersurface complements, Milnor fibers and higher homotopy groups of arrangments Ann. of Math. (2) 2003 473 507

[8] Fulton, William Introduction to toric varieties 1993

[9] Gaffney, Terence Integral closure of modules and Whitney equisingularity Invent. Math. 1992 301 322

[10] Gaffney, Terence Multiplicities and equisingularity of ICIS germs Invent. Math. 1996 209 220

[11] Gromov, M. Convex sets and Kähler manifolds 1990 1 38

[12] Harris, Joe Algebraic geometry 1995

[13] Hartshorne, Robin Varieties of small codimension in projective space Bull. Amer. Math. Soc. 1974 1017 1032

[14] Heron, A. P. Matroid polynomials 1972 164 202

[15] Huneke, Craig, Swanson, Irena Integral closure of ideals, rings, and modules 2006

[16] Jouanolou, Jean-Pierre Théorèmes de Bertini et applications 1983

[17] Burago, Yu. D., Zalgaller, V. A. Geometric inequalities 1988

[18] Kouchnirenko, A. G. Polyèdres de Newton et nombres de Milnor Invent. Math. 1976 1 31

[19] Kung, Joseph P. S. The geometric approach to matroid theory 1995 604 622

[20] Lazarsfeld, Robert Positivity in algebraic geometry. I 2004

[21] Lazarsfeld, Robert, Mustaå£Äƒ, Mircea Convex bodies associated to linear series Ann. Sci. Éc. Norm. Supér. (4) 2009 783 835

[22] Macpherson, R. D. Chern classes for singular algebraic varieties Ann. of Math. (2) 1974 423 432

[23] Marker, David Model theory 2002

[24] Northcott, D. G., Rees, D. Reductions of ideals in local rings Proc. Cambridge Philos. Soc. 1954 145 158

[25] Okounkov, Andrei Brunn-Minkowski inequality for multiplicities Invent. Math. 1996 405 411

[26] Oxley, James Matroid theory 2011

[27] Orlik, Peter, Solomon, Louis Combinatorics and topology of complements of hyperplanes Invent. Math. 1980 167 189

[28] Orlik, Peter, Terao, Hiroaki Arrangements of hyperplanes 1992

[29] Randell, Richard Morse theory, Milnor fibers and minimality of hyperplane arrangements Proc. Amer. Math. Soc. 2002 2737 2743

[30] Read, Ronald C. An introduction to chromatic polynomials J. Combinatorial Theory 1968 52 71

[31] Rees, D., Sharp, R. Y. On a theorem of B. Teissier on multiplicities of ideals in local rings J. London Math. Soc. (2) 1978 449 463

[32] Rota, Gian-Carlo Combinatorial theory, old and new 1971 229 233

[33] Samuel, Pierre La notion de multiplicité en algèbre et en géométrie algébrique J. Math. Pures Appl. (9) 1951 159 205

[34] Schneider, Rolf Convex bodies: the Brunn-Minkowski theory 1993

[35] Shafarevich, Igor R. Basic algebraic geometry. 1 1994

[36] Shephard, G. C. Inequalities between mixed volumes of convex sets Mathematika 1960 125 138

[37] Stanley, Richard P. Log-concave and unimodal sequences in algebra, combinatorics, and geometry 1989 500 535

[38] Stanley, Richard P. Foundations I and the development of algebraic combinatorics 1995 105 107

[39] Stanley, Richard P. Positivity problems and conjectures in algebraic combinatorics 2000 295 319

[40] Stanley, Richard P. An introduction to hyperplane arrangements 2007 389 496

[41] Teissier, Bernard Cycles évanescents, sections planes et conditions de Whitney 1973 285 362

[42] Eisenbud, David, Levine, Harold I. An algebraic formula for the degree of a 𝐶^{∞} map germ Ann. of Math. (2) 1977 19 44

[43] Teissier, Bernard Du théorème de l’index de Hodge aux inégalités isopérimétriques C. R. Acad. Sci. Paris Sér. A-B 1979

[44] Teissier, Bernard Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney 1982 314 491

[45] Trung, Ngã´ Viãªt Positivity of mixed multiplicities Math. Ann. 2001 33 63

[46] Ngo Viet Trung, Verma, Jugal Mixed multiplicities of ideals versus mixed volumes of polytopes Trans. Amer. Math. Soc. 2007 4711 4727

[47] Welsh, D. J. A. Matroid theory 1976

Cité par Sources :