Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_2012_00730_9,
     author = {Hida, Haruzo},
     title = {A finiteness property of abelian varieties with potentially ordinary good reduction},
     journal = {Journal of the American Mathematical Society},
     pages = {813--826},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2012},
     doi = {10.1090/S0894-0347-2012-00730-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00730-9/}
}
                      
                      
                    TY - JOUR AU - Hida, Haruzo TI - A finiteness property of abelian varieties with potentially ordinary good reduction JO - Journal of the American Mathematical Society PY - 2012 SP - 813 EP - 826 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00730-9/ DO - 10.1090/S0894-0347-2012-00730-9 ID - 10_1090_S0894_0347_2012_00730_9 ER -
%0 Journal Article %A Hida, Haruzo %T A finiteness property of abelian varieties with potentially ordinary good reduction %J Journal of the American Mathematical Society %D 2012 %P 813-826 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00730-9/ %R 10.1090/S0894-0347-2012-00730-9 %F 10_1090_S0894_0347_2012_00730_9
Hida, Haruzo. A finiteness property of abelian varieties with potentially ordinary good reduction. Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 813-826. doi: 10.1090/S0894-0347-2012-00730-9
[1] Automorphic forms on adèle groups 1975
[2] Abelian varieties 2008
[3] Abelian varieties with complex multiplication and modular functions 1998
[4] , Arithmetic moduli of elliptic curves 1985
[5] Arithmetic geometry 1986
[6] , Dihedral congruence primes and class fields of real quadratic fields J. Number Theory 2002 14 37
[7] Sur les représentations ð-adiques associées aux formes modulaires de Hilbert Ann. Sci. Ãcole Norm. Sup. (4) 1986 409 468
[8] Crystalline Dieudonné module theory via formal and rigid geometry Inst. Hautes Ãtudes Sci. Publ. Math. 1995
[9] , Les schémas de modules de courbes elliptiques 1973 143 316
[10] Il nây a pas de variété abélienne sur ð Invent. Math. 1985 515 538
[11] Iwasawa modules attached to congruences of cusp forms Ann. Sci. Ãcole Norm. Sup. (4) 1986 231 273
[12] Galois representations into ðºð¿â(ð_{ð}[[ð]]) attached to ordinary cusp forms Invent. Math. 1986 545 613
[13] Hecke algebras for ðºð¿â and ðºð¿â 1986 131 163
[14] Hecke fields of analytic families of modular forms J. Amer. Math. Soc. 2011 51 80
[15] Hilbert modular forms and Iwasawa theory 2006
[16] , Serreâs modularity conjecture. I Invent. Math. 2009 485 504
[17] Introduction to the arithmetic theory of automorphic functions 1971
[18] The Langlands conjecture for ðºðâ of a local field Ann. of Math. (2) 1980 381 412
[19] Modular forms and â-adic representations 1973 361 500
[20] Modular forms and Galois cohomology 2000
[21] Modular forms 1989
[22] , On ð-adic analytic families of Galois representations Compositio Math. 1986 231 264
[23] , , , Hodge cycles, motives, and Shimura varieties 1982
[24] Abelian varieties over ð and modular forms 1992 53 79
[25] Fields of definition of abelian varieties with real multiplication 1994 107 118
[26] Motives for modular forms Invent. Math. 1990 419 430
[27] , Good reduction of abelian varieties Ann. of Math. (2) 1968 492 517
[28] On the meromorphic continuation of degree two ð¿-functions Doc. Math. 2006 729 779
[29] Exercices dyadiques Invent. Math. 1974 1 22
Cité par Sources :
