A finiteness property of abelian varieties with potentially ordinary good reduction
Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 813-826

Voir la notice de l'article provenant de la source American Mathematical Society

For a prime $p>2$, contrary to super-singular cases, we prove that there are only finitely many twist equivalence classes of non-CM $\mathbb {Q}$-simple abelian varieties of $GL(2)$-type with potentially ordinary reduction modulo $p$ and good reduction everywhere outside $p$.
DOI : 10.1090/S0894-0347-2012-00730-9

Hida, Haruzo 1

1 Department of Mathematics, UCLA, Los Angeles, California 90095-1555
@article{10_1090_S0894_0347_2012_00730_9,
     author = {Hida, Haruzo},
     title = {A finiteness property of abelian varieties with potentially ordinary good reduction},
     journal = {Journal of the American Mathematical Society},
     pages = {813--826},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2012},
     doi = {10.1090/S0894-0347-2012-00730-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00730-9/}
}
TY  - JOUR
AU  - Hida, Haruzo
TI  - A finiteness property of abelian varieties with potentially ordinary good reduction
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 813
EP  - 826
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00730-9/
DO  - 10.1090/S0894-0347-2012-00730-9
ID  - 10_1090_S0894_0347_2012_00730_9
ER  - 
%0 Journal Article
%A Hida, Haruzo
%T A finiteness property of abelian varieties with potentially ordinary good reduction
%J Journal of the American Mathematical Society
%D 2012
%P 813-826
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2012-00730-9/
%R 10.1090/S0894-0347-2012-00730-9
%F 10_1090_S0894_0347_2012_00730_9
Hida, Haruzo. A finiteness property of abelian varieties with potentially ordinary good reduction. Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 813-826. doi: 10.1090/S0894-0347-2012-00730-9

[1] Gelbart, Stephen S. Automorphic forms on adèle groups 1975

[2] Mumford, David Abelian varieties 2008

[3] Shimura, Goro Abelian varieties with complex multiplication and modular functions 1998

[4] Katz, Nicholas M., Mazur, Barry Arithmetic moduli of elliptic curves 1985

[5] Arithmetic geometry 1986

[6] Brown, Alexander F., Ghate, Eknath P. Dihedral congruence primes and class fields of real quadratic fields J. Number Theory 2002 14 37

[7] Carayol, Henri Sur les représentations 𝑙-adiques associées aux formes modulaires de Hilbert Ann. Sci. École Norm. Sup. (4) 1986 409 468

[8] De Jong, A. J. Crystalline Dieudonné module theory via formal and rigid geometry Inst. Hautes Études Sci. Publ. Math. 1995

[9] Deligne, P., Rapoport, M. Les schémas de modules de courbes elliptiques 1973 143 316

[10] Fontaine, Jean-Marc Il n’y a pas de variété abélienne sur 𝑍 Invent. Math. 1985 515 538

[11] Hida, Haruzo Iwasawa modules attached to congruences of cusp forms Ann. Sci. École Norm. Sup. (4) 1986 231 273

[12] Hida, Haruzo Galois representations into 𝐺𝐿₂(𝑍_{𝑝}[[𝑋]]) attached to ordinary cusp forms Invent. Math. 1986 545 613

[13] Hida, Haruzo Hecke algebras for 𝐺𝐿₁ and 𝐺𝐿₂ 1986 131 163

[14] Hida, Haruzo Hecke fields of analytic families of modular forms J. Amer. Math. Soc. 2011 51 80

[15] Hida, Haruzo Hilbert modular forms and Iwasawa theory 2006

[16] Khare, Chandrashekhar, Wintenberger, Jean-Pierre Serre’s modularity conjecture. I Invent. Math. 2009 485 504

[17] Shimura, Goro Introduction to the arithmetic theory of automorphic functions 1971

[18] Kutzko, Philip The Langlands conjecture for 𝐺𝑙₂ of a local field Ann. of Math. (2) 1980 381 412

[19] Langlands, R. P. Modular forms and ℓ-adic representations 1973 361 500

[20] Hida, Haruzo Modular forms and Galois cohomology 2000

[21] Miyake, Toshitsune Modular forms 1989

[22] Mazur, B., Wiles, A. On 𝑝-adic analytic families of Galois representations Compositio Math. 1986 231 264

[23] Deligne, Pierre, Milne, James S., Ogus, Arthur, Shih, Kuang-Yen Hodge cycles, motives, and Shimura varieties 1982

[24] Ribet, Kenneth A. Abelian varieties over 𝑄 and modular forms 1992 53 79

[25] Ribet, Kenneth A. Fields of definition of abelian varieties with real multiplication 1994 107 118

[26] Scholl, A. J. Motives for modular forms Invent. Math. 1990 419 430

[27] Serre, Jean-Pierre, Tate, John Good reduction of abelian varieties Ann. of Math. (2) 1968 492 517

[28] Taylor, Richard On the meromorphic continuation of degree two 𝐿-functions Doc. Math. 2006 729 779

[29] Weil, Andrã© Exercices dyadiques Invent. Math. 1974 1 22

Cité par Sources :