Global well-posedness and scattering for the defocusing, 𝐿²-critical nonlinear Schrödinger equation when 𝑑≥3
Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 429-463

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper we prove that the defocusing, $d$-dimensional mass critical nonlinear Schrödinger initial value problem is globally well-posed and solutions scatter for $u_{0} \in L^{2}(\mathbf {R}^{d})$, $d \geq 3$. To do this, we will prove a frequency localized interaction Morawetz estimate similar to the estimate made by Colliander, Keel, Staffilani, Takaoka, and Tao. Since we are considering an $L^{2}$-critical initial value problem we will localize to low frequencies. The main new ingredient in this proof is a long time Strichartz estimate for the solution to the first equation given in the paper at high frequencies. The long term Strichartz estimates allow us to estimate the error in the interaction Morawetz estimate caused by localizing to low frequencies.
DOI : 10.1090/S0894-0347-2011-00727-3

Dodson, Benjamin 1

1 Department of Mathematics, University of California, Berkeley, 970 Evans Hall 3840, Berkeley, California 94720-3840
@article{10_1090_S0894_0347_2011_00727_3,
     author = {Dodson, Benjamin},
     title = {Global well-posedness and scattering for the defocusing, {{\dh}{\textquestiondown}\^A{\texttwosuperior}-critical} nonlinear {Schr\~A{\textparagraph}dinger} equation when {\dh}‘‘\^a‰{\textyen}3},
     journal = {Journal of the American Mathematical Society},
     pages = {429--463},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00727-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00727-3/}
}
TY  - JOUR
AU  - Dodson, Benjamin
TI  - Global well-posedness and scattering for the defocusing, 𝐿²-critical nonlinear Schrödinger equation when 𝑑≥3
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 429
EP  - 463
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00727-3/
DO  - 10.1090/S0894-0347-2011-00727-3
ID  - 10_1090_S0894_0347_2011_00727_3
ER  - 
%0 Journal Article
%A Dodson, Benjamin
%T Global well-posedness and scattering for the defocusing, 𝐿²-critical nonlinear Schrödinger equation when 𝑑≥3
%J Journal of the American Mathematical Society
%D 2012
%P 429-463
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00727-3/
%R 10.1090/S0894-0347-2011-00727-3
%F 10_1090_S0894_0347_2011_00727_3
Dodson, Benjamin. Global well-posedness and scattering for the defocusing, 𝐿²-critical nonlinear Schrödinger equation when 𝑑≥3. Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 429-463. doi: 10.1090/S0894-0347-2011-00727-3

[1] Berestycki, Henri, Lions, Pierre-Louis Existence d’ondes solitaires dans des problèmes nonlinéaires du type Klein-Gordon C. R. Acad. Sci. Paris Sér. A-B 1979

[2] Bourgain, J. Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity Internat. Math. Res. Notices 1998 253 283

[3] Bourgain, J. Global solutions of nonlinear Schrödinger equations 1999

[4] Bourgain, J. Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case J. Amer. Math. Soc. 1999 145 171

[5] Brezis, H., Coron, J.-M. Convergence of solutions of 𝐻-systems or how to blow bubbles Arch. Rational Mech. Anal. 1985 21 56

[6] Cazenave, Thierry, Weissler, Fred B. The Cauchy problem for the nonlinear Schrödinger equation in 𝐻¹ Manuscripta Math. 1988 477 494

[7] Cazenave, Thierry, Weissler, Fred B. The Cauchy problem for the critical nonlinear Schrödinger equation in 𝐻^{𝑠} Nonlinear Anal. 1990 807 836

[8] Colliander, James, Grillakis, Manoussos, Tzirakis, Nikolaos Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on ℝ² Int. Math. Res. Not. IMRN 2007

[9] Colliander, J., Grillakis, M., Tzirakis, N. Tensor products and correlation estimates with applications to nonlinear Schrödinger equations Comm. Pure Appl. Math. 2009 920 968

[10] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T. Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation Math. Res. Lett. 2002 659 682

[11] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T. Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on ℝ³ Comm. Pure Appl. Math. 2004 987 1014

[12] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T. Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in ℝ³ Ann. of Math. (2) 2008 767 865

[13] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T. Resonant decompositions and the 𝐼-method for the cubic nonlinear Schrödinger equation on ℝ² Discrete Contin. Dyn. Syst. 2008 665 686

[14] Colliander, James, Roy, Tristan Bootstrapped Morawetz estimates and resonant decomposition for low regularity global solutions of cubic NLS on ℝ² Commun. Pure Appl. Anal. 2011 397 414

[15] De Silva, Daniela, Pavloviä‡, Nataå¡A, Staffilani, Gigliola, Tzirakis, Nikolaos Global well-posedness for the 𝐿² critical nonlinear Schrödinger equation in higher dimensions Commun. Pure Appl. Anal. 2007 1023 1041

[16] De Silva, Daniela, Pavloviä‡, Nataå¡A, Staffilani, Gigliola, Tzirakis, Nikolaos Global well-posedness and polynomial bounds for the defocusing 𝐿²-critical nonlinear Schrödinger equation in ℝ Comm. Partial Differential Equations 2008 1395 1429

[17] Dodson, Benjamin Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation Commun. Pure Appl. Anal. 2011 127 140

[18] Grillakis, Manoussos G. On nonlinear Schrödinger equations Comm. Partial Differential Equations 2000 1827 1844

[19] Keel, Markus, Tao, Terence Endpoint Strichartz estimates Amer. J. Math. 1998 955 980

[20] Kenig, Carlos E., Merle, Frank Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case Invent. Math. 2006 645 675

[21] Kenig, Carlos E., Merle, Frank Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation Acta Math. 2008 147 212

[22] Kenig, Carlos E., Merle, Frank Scattering for 𝐻̇^{1/2} bounded solutions to the cubic, defocusing NLS in 3 dimensions Trans. Amer. Math. Soc. 2010 1937 1962

[23] Keraani, Sahbi On the defect of compactness for the Strichartz estimates of the Schrödinger equations J. Differential Equations 2001 353 392

[24] Keraani, Sahbi On the blow up phenomenon of the critical nonlinear Schrödinger equation J. Funct. Anal. 2006 171 192

[25] Killip, Rowan, Tao, Terence, Visan, Monica The cubic nonlinear Schrödinger equation in two dimensions with radial data J. Eur. Math. Soc. (JEMS) 2009 1203 1258

[26] Killip, Rowan, Visan, Monica The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher Amer. J. Math. 2010 361 424

[27] Killip, Rowan, Visan, Monica, Zhang, Xiaoyi The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher Anal. PDE 2008 229 266

[28] Ogawa, Takayoshi, Tsutsumi, Yoshio Blow-up of 𝐻¹ solution for the nonlinear Schrödinger equation J. Differential Equations 1991 317 330

[29] Ogawa, Takayoshi, Tsutsumi, Yoshio Blow-up of 𝐻¹ solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity Proc. Amer. Math. Soc. 1991 487 496

[30] Ozawa, T., Tsutsumi, Y. Space-time estimates for null gauge forms and nonlinear Schrödinger equations Differential Integral Equations 1998 201 222

[31] Planchon, Fabrice, Vega, Luis Bilinear virial identities and applications Ann. Sci. Éc. Norm. Supér. (4) 2009 261 290

[32] Ryckman, E., Visan, M. Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in ℝ¹⁺⁴ Amer. J. Math. 2007 1 60

[33] Shao, Shuanglin Sharp linear and bilinear restriction estimates for paraboloids in the cylindrically symmetric case Rev. Mat. Iberoam. 2009 1127 1168

[34] Sogge, Christopher D. Fourier integrals in classical analysis 1993

[35] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993

[36] Tao, Terence Global regularity of wave maps. I. Small critical Sobolev norm in high dimension Internat. Math. Res. Notices 2001 299 328

[37] Tao, Terence Global regularity of wave maps. II. Small energy in two dimensions Comm. Math. Phys. 2001 443 544

[38] Tao, Terence Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data New York J. Math. 2005 57 80

[39] Tao, Terence Nonlinear dispersive equations 2006

[40] Tao, Terence, Visan, Monica, Zhang, Xiaoyi Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions Duke Math. J. 2007 165 202

[41] Tao, Terence, Visan, Monica, Zhang, Xiaoyi The nonlinear Schrödinger equation with combined power-type nonlinearities Comm. Partial Differential Equations 2007 1281 1343

[42] Tao, Terence, Visan, Monica, Zhang, Xiaoyi Minimal-mass blowup solutions of the mass-critical NLS Forum Math. 2008 881 919

[43] Taylor, Michael E. Pseudodifferential operators and nonlinear PDE 1991 213

[44] Taylor, Michael E. Partial differential equations 1996

[45] Taylor, Michael E. Tools for PDE 2000

[46] Visan, Monica The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions Duke Math. J. 2007 281 374

Cité par Sources :