Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_2011_00727_3,
author = {Dodson, Benjamin},
title = {Global well-posedness and scattering for the defocusing, {{\dh}{\textquestiondown}\^A{\texttwosuperior}-critical} nonlinear {Schr\~A{\textparagraph}dinger} equation when {\dh}\^a{\textyen}3},
journal = {Journal of the American Mathematical Society},
pages = {429--463},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2012},
doi = {10.1090/S0894-0347-2011-00727-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00727-3/}
}
TY - JOUR AU - Dodson, Benjamin TI - Global well-posedness and scattering for the defocusing, ð¿Â²-critical nonlinear Schrödinger equation when ðâ¥3 JO - Journal of the American Mathematical Society PY - 2012 SP - 429 EP - 463 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00727-3/ DO - 10.1090/S0894-0347-2011-00727-3 ID - 10_1090_S0894_0347_2011_00727_3 ER -
%0 Journal Article %A Dodson, Benjamin %T Global well-posedness and scattering for the defocusing, ð¿Â²-critical nonlinear Schrödinger equation when ðâ¥3 %J Journal of the American Mathematical Society %D 2012 %P 429-463 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00727-3/ %R 10.1090/S0894-0347-2011-00727-3 %F 10_1090_S0894_0347_2011_00727_3
Dodson, Benjamin. Global well-posedness and scattering for the defocusing, ð¿Â²-critical nonlinear Schrödinger equation when ðâ¥3. Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 429-463. doi: 10.1090/S0894-0347-2011-00727-3
[1] , Existence dâondes solitaires dans des problèmes nonlinéaires du type Klein-Gordon C. R. Acad. Sci. Paris Sér. A-B 1979
[2] Refinements of Strichartzâ inequality and applications to 2D-NLS with critical nonlinearity Internat. Math. Res. Notices 1998 253 283
[3] Global solutions of nonlinear Schrödinger equations 1999
[4] Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case J. Amer. Math. Soc. 1999 145 171
[5] , Convergence of solutions of ð»-systems or how to blow bubbles Arch. Rational Mech. Anal. 1985 21 56
[6] , The Cauchy problem for the nonlinear Schrödinger equation in ð»Â¹ Manuscripta Math. 1988 477 494
[7] , The Cauchy problem for the critical nonlinear Schrödinger equation in ð»^{ð } Nonlinear Anal. 1990 807 836
[8] , , Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on â² Int. Math. Res. Not. IMRN 2007
[9] , , Tensor products and correlation estimates with applications to nonlinear Schrödinger equations Comm. Pure Appl. Math. 2009 920 968
[10] , , , , Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation Math. Res. Lett. 2002 659 682
[11] , , , , Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on â³ Comm. Pure Appl. Math. 2004 987 1014
[12] , , , , Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in â³ Ann. of Math. (2) 2008 767 865
[13] , , , , Resonant decompositions and the ð¼-method for the cubic nonlinear Schrödinger equation on â² Discrete Contin. Dyn. Syst. 2008 665 686
[14] , Bootstrapped Morawetz estimates and resonant decomposition for low regularity global solutions of cubic NLS on â² Commun. Pure Appl. Anal. 2011 397 414
[15] , , , Global well-posedness for the ð¿Â² critical nonlinear Schrödinger equation in higher dimensions Commun. Pure Appl. Anal. 2007 1023 1041
[16] , , , Global well-posedness and polynomial bounds for the defocusing ð¿Â²-critical nonlinear Schrödinger equation in â Comm. Partial Differential Equations 2008 1395 1429
[17] Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation Commun. Pure Appl. Anal. 2011 127 140
[18] On nonlinear Schrödinger equations Comm. Partial Differential Equations 2000 1827 1844
[19] , Endpoint Strichartz estimates Amer. J. Math. 1998 955 980
[20] , Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case Invent. Math. 2006 645 675
[21] , Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation Acta Math. 2008 147 212
[22] , Scattering for ð»Ì^{1/2} bounded solutions to the cubic, defocusing NLS in 3 dimensions Trans. Amer. Math. Soc. 2010 1937 1962
[23] On the defect of compactness for the Strichartz estimates of the Schrödinger equations J. Differential Equations 2001 353 392
[24] On the blow up phenomenon of the critical nonlinear Schrödinger equation J. Funct. Anal. 2006 171 192
[25] , , The cubic nonlinear Schrödinger equation in two dimensions with radial data J. Eur. Math. Soc. (JEMS) 2009 1203 1258
[26] , The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher Amer. J. Math. 2010 361 424
[27] , , The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher Anal. PDE 2008 229 266
[28] , Blow-up of ð»Â¹ solution for the nonlinear Schrödinger equation J. Differential Equations 1991 317 330
[29] , Blow-up of ð»Â¹ solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity Proc. Amer. Math. Soc. 1991 487 496
[30] , Space-time estimates for null gauge forms and nonlinear Schrödinger equations Differential Integral Equations 1998 201 222
[31] , Bilinear virial identities and applications Ann. Sci. Ãc. Norm. Supér. (4) 2009 261 290
[32] , Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in â¹âºâ´ Amer. J. Math. 2007 1 60
[33] Sharp linear and bilinear restriction estimates for paraboloids in the cylindrically symmetric case Rev. Mat. Iberoam. 2009 1127 1168
[34] Fourier integrals in classical analysis 1993
[35] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993
[36] Global regularity of wave maps. I. Small critical Sobolev norm in high dimension Internat. Math. Res. Notices 2001 299 328
[37] Global regularity of wave maps. II. Small energy in two dimensions Comm. Math. Phys. 2001 443 544
[38] Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data New York J. Math. 2005 57 80
[39] Nonlinear dispersive equations 2006
[40] , , Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions Duke Math. J. 2007 165 202
[41] , , The nonlinear Schrödinger equation with combined power-type nonlinearities Comm. Partial Differential Equations 2007 1281 1343
[42] , , Minimal-mass blowup solutions of the mass-critical NLS Forum Math. 2008 881 919
[43] Pseudodifferential operators and nonlinear PDE 1991 213
[44] Partial differential equations 1996
[45] Tools for PDE 2000
[46] The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions Duke Math. J. 2007 281 374
Cité par Sources :