Voir la notice de l'article provenant de la source American Mathematical Society
Lewis, John 1 ; Nyström, Kaj 2
@article{10_1090_S0894_0347_2011_00726_1,
author = {Lewis, John and Nystr\~A{\textparagraph}m, Kaj},
title = {Regularity and free boundary regularity for the {{\dh}-Laplace} operator in {Reifenberg} flat and {Ahlfors} regular domains},
journal = {Journal of the American Mathematical Society},
pages = {827--862},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {2012},
doi = {10.1090/S0894-0347-2011-00726-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00726-1/}
}
TY - JOUR AU - Lewis, John AU - Nyström, Kaj TI - Regularity and free boundary regularity for the ð-Laplace operator in Reifenberg flat and Ahlfors regular domains JO - Journal of the American Mathematical Society PY - 2012 SP - 827 EP - 862 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00726-1/ DO - 10.1090/S0894-0347-2011-00726-1 ID - 10_1090_S0894_0347_2011_00726_1 ER -
%0 Journal Article %A Lewis, John %A Nyström, Kaj %T Regularity and free boundary regularity for the ð-Laplace operator in Reifenberg flat and Ahlfors regular domains %J Journal of the American Mathematical Society %D 2012 %P 827-862 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00726-1/ %R 10.1090/S0894-0347-2011-00726-1 %F 10_1090_S0894_0347_2011_00726_1
Lewis, John; Nyström, Kaj. Regularity and free boundary regularity for the ð-Laplace operator in Reifenberg flat and Ahlfors regular domains. Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 827-862. doi: 10.1090/S0894-0347-2011-00726-1
[1] , , A free boundary problem for quasilinear elliptic equations Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1984 1 44
[2] , On the dimension of ð-harmonic measure Ann. Acad. Sci. Fenn. Math. 2005 459 505
[3] A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are ð¶^{1,ð¼} Rev. Mat. Iberoamericana 1987 139 162
[4] A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz Comm. Pure Appl. Math. 1989 55 78
[5] , , , Boundary behavior of nonnegative solutions of elliptic operators in divergence form Indiana Univ. Math. J. 1981 621 640
[6] , Weighted norm inequalities for maximal functions and singular integrals Studia Math. 1974 241 250
[7] , , Harmonic measure 2005
[8] Estimates of harmonic measure Arch. Rational Mech. Anal. 1977 275 288
[9] , Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals Indiana Univ. Math. J. 1990 831 845
[10] , A minimum problem with free boundary for a degenerate quasilinear operator Calc. Var. Partial Differential Equations 2005 97 124
[11] , Measure theory and fine properties of functions 1992
[12] Regularity of the Poisson kernel and free boundary problems Colloq. Math. 1990 547 568
[13] , The logarithm of the Poisson kernel of a ð¶Â¹ domain has vanishing mean oscillation Trans. Amer. Math. Soc. 1982 781 794
[14] , Boundary behavior of harmonic functions in nontangentially accessible domains Adv. in Math. 1982 80 147
[15] , Harmonic measure on locally flat domains Duke Math. J. 1997 509 551
[16] , Free boundary regularity for harmonic measures and Poisson kernels Ann. of Math. (2) 1999 369 454
[17] , Poisson kernel characterization of Reifenberg flat chord arc domains Ann. Sci. Ãcole Norm. Sup. (4) 2003 323 401
[18] , Free boundary regularity below the continuous threshold: 2-phase problems J. Reine Angew. Math. 2006 1 44
[19] , , Boundary structure and size in terms of interior and exterior harmonic measures in higher dimensions J. Amer. Math. Soc. 2009 771 796
[20] Boundary problems in the theory of univalent functions Amer. Math. Soc. Transl. (2) 1963 1 35
[21] Uniformly fat sets Trans. Amer. Math. Soc. 1988 177 196
[22] , Boundary behaviour for ð harmonic functions in Lipschitz and starlike Lipschitz ring domains Ann. Sci. Ãcole Norm. Sup. (4) 2007 765 813
[23] , Boundary behavior and the Martin boundary problem for ð harmonic functions in Lipschitz domains Ann. of Math. (2) 2010 1907 1948
[24] , Regularity and free boundary regularity for the ð Laplacian in Lipschitz and ð¶Â¹ domains Ann. Acad. Sci. Fenn. Math. 2008 523 548
[25] , New results for ð harmonic functions Pure Appl. Math. Q. 2011 345 363
[26] , Boundary behaviour of ð-harmonic functions in domains beyond Lipschitz domains Adv. Calc. Var. 2008 133 170
[27] , Regularity of Lipschitz free boundaries in two-phase problems for the ð-Laplace operator Adv. Math. 2010 2565 2597
[28] , On a two-phase free boundary condition for ð-harmonic measures Manuscripta Math. 2009 231 249
[29] , Uniqueness in a free boundary problem Comm. Partial Differential Equations 2006 1591 1614
[30] , Divergence form operators in Reifenberg flat domains Math. Z. 2010 15 41
[31] On univalent functions, Bloch functions and VMOA Math. Ann. 1978 199 208
[32] Analysis vs. geometry on a class of rectifiable hypersurfaces in ð â¿ Indiana Univ. Math. J. 1990 1005 1035
[33] Chord-arc surfaces with small constant. I Adv. Math. 1991 198 223
[34] Chord-arc surfaces with small constant. II. Good parameterizations Adv. Math. 1991 170 199
[35] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993
Cité par Sources :