Regularity and free boundary regularity for the 𝑝-Laplace operator in Reifenberg flat and Ahlfors regular domains
Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 827-862

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper we solve several problems concerning regularity and free boundary regularity, below the continuous threshold, for positive solutions to the $p$-Laplace equation, $1 p \infty$, vanishing on a portion of the boundary of an Ahlfors regular NTA-domain. In Theorem 1 of our paper we show that if $\Omega \subset \mathbf {R}^{n}, n \geq 2,$ is an Ahlfors regular NTA-domain and $u$ is a positive $p$-harmonic function in $\Omega \cap B (w, 4r)$, with continuous boundary value 0 on $\partial \Omega \cap B (w, 4r)$, then $\nabla u (x) \to \nabla u (y)$ nontangentially as $x \rightarrow y \in \partial \Omega \cap B (w, 4r),$ almost everywhere with respect to surface area, $\sigma ,$ on $\partial \Omega \cap B (w, 4 r).$ Moreover, $\log | \nabla u |$ is of bounded mean oscillation on $\partial \Omega \cap B (w, r)$ with $\| \log | \nabla u |\|_{\mathrm {BMO} (\partial \Omega \cap B(w, r))} \leq c$. If, in addition, $\Omega$ is Reifenberg flat with vanishing constant and $n\in \mathrm {VMO}(\partial \Omega \cap B(w, 4r))$, where $n$ denotes the unit inner normal to $\partial \Omega$ in the measure-theoretic sense, then in Theorem 2 we prove that $\log | \nabla u | \in \mathrm {VMO}(\partial \Omega \cap B(w, r))$. In Theorem 3 we prove the following converse to Theorem 2. Suppose $u$ is as in Theorem 1, $\log | \nabla u | \in \mathrm {VMO}(\partial \Omega \cap B(w, r))$, and that $\partial \Omega \cap B (w, r)$ is $(\delta , r_0)$-Reifenberg flat. Then there exists $\bar \delta = \bar \delta (p, n)$ such that if $0 \delta \leq \bar \delta ,$ then $\partial \Omega \cap B(w, r/2)$ is Reifenberg flat with vanishing constant and $n\in \mathrm {VMO}(\partial \Omega \cap B(w, r/2))$. Finally, in Theorem 4 we establish a two-phase version of Theorem 3 without the smallness assumption on $\delta .$
DOI : 10.1090/S0894-0347-2011-00726-1

Lewis, John 1 ; Nyström, Kaj 2

1 Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027
2 Department of Mathematics, Uppsala University, S-751 06 Uppsala, Sweden
@article{10_1090_S0894_0347_2011_00726_1,
     author = {Lewis, John and Nystr\~A{\textparagraph}m, Kaj},
     title = {Regularity and free boundary regularity for the {{\dh}‘-Laplace} operator in {Reifenberg} flat and {Ahlfors} regular domains},
     journal = {Journal of the American Mathematical Society},
     pages = {827--862},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00726-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00726-1/}
}
TY  - JOUR
AU  - Lewis, John
AU  - Nyström, Kaj
TI  - Regularity and free boundary regularity for the 𝑝-Laplace operator in Reifenberg flat and Ahlfors regular domains
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 827
EP  - 862
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00726-1/
DO  - 10.1090/S0894-0347-2011-00726-1
ID  - 10_1090_S0894_0347_2011_00726_1
ER  - 
%0 Journal Article
%A Lewis, John
%A Nyström, Kaj
%T Regularity and free boundary regularity for the 𝑝-Laplace operator in Reifenberg flat and Ahlfors regular domains
%J Journal of the American Mathematical Society
%D 2012
%P 827-862
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00726-1/
%R 10.1090/S0894-0347-2011-00726-1
%F 10_1090_S0894_0347_2011_00726_1
Lewis, John; Nyström, Kaj. Regularity and free boundary regularity for the 𝑝-Laplace operator in Reifenberg flat and Ahlfors regular domains. Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 827-862. doi: 10.1090/S0894-0347-2011-00726-1

[1] Alt, Hans Wilhelm, Caffarelli, Luis A., Friedman, Avner A free boundary problem for quasilinear elliptic equations Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1984 1 44

[2] Bennewitz, Bjã¶Rn, Lewis, John L. On the dimension of 𝑝-harmonic measure Ann. Acad. Sci. Fenn. Math. 2005 459 505

[3] Caffarelli, Luis A. A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are 𝐶^{1,𝛼} Rev. Mat. Iberoamericana 1987 139 162

[4] Caffarelli, Luis A. A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz Comm. Pure Appl. Math. 1989 55 78

[5] Caffarelli, L., Fabes, E., Mortola, S., Salsa, S. Boundary behavior of nonnegative solutions of elliptic operators in divergence form Indiana Univ. Math. J. 1981 621 640

[6] Coifman, R. R., Fefferman, C. Weighted norm inequalities for maximal functions and singular integrals Studia Math. 1974 241 250

[7] Capogna, Luca, Kenig, Carlos E., Lanzani, Loredana Harmonic measure 2005

[8] Dahlberg, Bjã¶Rn E. J. Estimates of harmonic measure Arch. Rational Mech. Anal. 1977 275 288

[9] David, G., Jerison, D. Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals Indiana Univ. Math. J. 1990 831 845

[10] Danielli, Donatella, Petrosyan, Arshak A minimum problem with free boundary for a degenerate quasilinear operator Calc. Var. Partial Differential Equations 2005 97 124

[11] Evans, Lawrence C., Gariepy, Ronald F. Measure theory and fine properties of functions 1992

[12] Jerison, David Regularity of the Poisson kernel and free boundary problems Colloq. Math. 1990 547 568

[13] Jerison, David S., Kenig, Carlos E. The logarithm of the Poisson kernel of a 𝐶¹ domain has vanishing mean oscillation Trans. Amer. Math. Soc. 1982 781 794

[14] Jerison, David S., Kenig, Carlos E. Boundary behavior of harmonic functions in nontangentially accessible domains Adv. in Math. 1982 80 147

[15] Kenig, Carlos E., Toro, Tatiana Harmonic measure on locally flat domains Duke Math. J. 1997 509 551

[16] Kenig, Carlos E., Toro, Tatiana Free boundary regularity for harmonic measures and Poisson kernels Ann. of Math. (2) 1999 369 454

[17] Kenig, Carlos E., Toro, Tatiana Poisson kernel characterization of Reifenberg flat chord arc domains Ann. Sci. École Norm. Sup. (4) 2003 323 401

[18] Kenig, Carlos, Toro, Tatiana Free boundary regularity below the continuous threshold: 2-phase problems J. Reine Angew. Math. 2006 1 44

[19] Kenig, C., Preiss, D., Toro, T. Boundary structure and size in terms of interior and exterior harmonic measures in higher dimensions J. Amer. Math. Soc. 2009 771 796

[20] Lavrent′Ev, M. Boundary problems in the theory of univalent functions Amer. Math. Soc. Transl. (2) 1963 1 35

[21] Lewis, John L. Uniformly fat sets Trans. Amer. Math. Soc. 1988 177 196

[22] Lewis, John L., Nystrã¶M, Kaj Boundary behaviour for 𝑝 harmonic functions in Lipschitz and starlike Lipschitz ring domains Ann. Sci. École Norm. Sup. (4) 2007 765 813

[23] Lewis, John, Nystrã¶M, Kaj Boundary behavior and the Martin boundary problem for 𝑝 harmonic functions in Lipschitz domains Ann. of Math. (2) 2010 1907 1948

[24] Lewis, John L., Nystrã¶M, Kaj Regularity and free boundary regularity for the 𝑝 Laplacian in Lipschitz and 𝐶¹ domains Ann. Acad. Sci. Fenn. Math. 2008 523 548

[25] Lewis, John L., Nystrã¶M, Kaj New results for 𝑝 harmonic functions Pure Appl. Math. Q. 2011 345 363

[26] Lewis, John L., Nystrã¶M, Kaj Boundary behaviour of 𝑝-harmonic functions in domains beyond Lipschitz domains Adv. Calc. Var. 2008 133 170

[27] Lewis, John L., Nystrã¶M, Kaj Regularity of Lipschitz free boundaries in two-phase problems for the 𝑝-Laplace operator Adv. Math. 2010 2565 2597

[28] Lundstrã¶M, Niklas L. P., Nystrã¶M, Kaj On a two-phase free boundary condition for 𝑝-harmonic measures Manuscripta Math. 2009 231 249

[29] Lewis, John L., Vogel, Andrew L. Uniqueness in a free boundary problem Comm. Partial Differential Equations 2006 1591 1614

[30] Milakis, Emmanouil, Toro, Tatiana Divergence form operators in Reifenberg flat domains Math. Z. 2010 15 41

[31] Pommerenke, Ch. On univalent functions, Bloch functions and VMOA Math. Ann. 1978 199 208

[32] Semmes, Stephen Analysis vs. geometry on a class of rectifiable hypersurfaces in 𝑅ⁿ Indiana Univ. Math. J. 1990 1005 1035

[33] Semmes, Stephen Chord-arc surfaces with small constant. I Adv. Math. 1991 198 223

[34] Semmes, Stephen Chord-arc surfaces with small constant. II. Good parameterizations Adv. Math. 1991 170 199

[35] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993

Cité par Sources :