Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_2011_00722_4,
     author = {Guo, Yan},
     title = {The {Vlasov-Poisson-Landau} system in a periodic box},
     journal = {Journal of the American Mathematical Society},
     pages = {759--812},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00722-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00722-4/}
}
                      
                      
                    TY - JOUR AU - Guo, Yan TI - The Vlasov-Poisson-Landau system in a periodic box JO - Journal of the American Mathematical Society PY - 2012 SP - 759 EP - 812 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00722-4/ DO - 10.1090/S0894-0347-2011-00722-4 ID - 10_1090_S0894_0347_2011_00722_4 ER -
%0 Journal Article %A Guo, Yan %T The Vlasov-Poisson-Landau system in a periodic box %J Journal of the American Mathematical Society %D 2012 %P 759-812 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00722-4/ %R 10.1090/S0894-0347-2011-00722-4 %F 10_1090_S0894_0347_2011_00722_4
Guo, Yan. The Vlasov-Poisson-Landau system in a periodic box. Journal of the American Mathematical Society, Tome 25 (2012) no. 3, pp. 759-812. doi: 10.1090/S0894-0347-2011-00722-4
[1] , On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation Mat. Sb. 1990 435 446
[2] , On the Landau approximation in plasma physics Ann. Inst. H. Poincaré C Anal. Non Linéaire 2004 61 95
[3] , , Smoothing effects for classical solutions of the full Landau equation Arch. Ration. Mech. Anal. 2009 21 55
[4] , Dispersion relations for the linearized Fokker-Planck equation Arch. Rational Mech. Anal. 1997 137 167
[5] , On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation Invent. Math. 2005 245 316
[6] The Landau equation in a periodic box Comm. Math. Phys. 2002 391 434
[7] The Vlasov-Poisson-Boltzmann system near Maxwellians Comm. Pure Appl. Math. 2002 1104 1135
[8] Boltzmann diffusive limit beyond the Navier-Stokes approximation Comm. Pure Appl. Math. 2006 626 687
[9] Classical solutions to the Boltzmann equation for molecules with an angular cutoff Arch. Ration. Mech. Anal. 2003 305 353
[10] The Vlasov-Maxwell-Boltzmann system near Maxwellians Invent. Math. 2003 593 630
[11] , Stability in the Stefan problem with surface tension (I) Comm. Partial Differential Equations 2010 201 244
[12] The Cauchy problem in kinetic theory 1996
[13] , Global classical solutions of the Boltzmann equation with long-range interactions Proc. Natl. Acad. Sci. USA 2010 5744 5749
[14] , On the Cauchy problem of the Boltzmann and Landau equations with soft potentials Quart. Appl. Math. 2007 281 315
[15] On Boltzmann and Landau equations Philos. Trans. Roy. Soc. London Ser. A 1994 191 204
[16] , Almost exponential decay near Maxwellian Comm. Partial Differential Equations 2006 417 429
[17] , Exponential decay for soft potentials near Maxwellian Arch. Ration. Mech. Anal. 2008 287 339
[18] , Stability of the relativistic Maxwellian in a collisional plasma Comm. Math. Phys. 2004 263 320
[19] On the Cauchy problem for Landau equation: sequential stability, global existence Adv. Differential Equations 1996 793 816
[20] Local existence of solutions to the Landau-Maxwell system Math. Methods Appl. Sci. 1994 613 641
[21] Local existence of classical solutions to the Landau equations Transport Theory Statist. Phys. 1994 479 499
Cité par Sources :
