The archimedean theory of the exterior square 𝐿-functions over ℚ
Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 465-506

Voir la notice de l'article provenant de la source American Mathematical Society

The analytic properties of automorphic $L$-functions have historically been obtained either through integral representations (the “Rankin-Selberg method”) or properties of the Fourier expansions of Eisenstein series (the “Langlands-Shahidi method”). We introduce a method based on pairings of automorphic distributions that appears to be applicable to a wide variety of $L$-functions, including all which have integral representations. In some sense our method could be considered a completion of the Rankin-Selberg method because of its common features. We consider a particular but representative example, the exterior square $L$-functions on $GL(n)$, by constructing a pairing which we compute as a product of this $L$-function times an explicit ratio of Gamma functions. We use this to deduce that exterior square $L$-functions, when multiplied by the Gamma factors predicted by Langlands, are holomorphic on $\mathbb {C}-\{0,1\}$ with at most simple poles at 0 and 1, proving a conjecture of Langlands which has not been obtained by the existing two methods.
DOI : 10.1090/S0894-0347-2011-00719-4

Miller, Stephen 1 ; Schmid, Wilfried 2

1 Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854-8019
2 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
@article{10_1090_S0894_0347_2011_00719_4,
     author = {Miller, Stephen and Schmid, Wilfried},
     title = {The archimedean theory of the exterior square {\dh}{\textquestiondown}-functions over \^a„š},
     journal = {Journal of the American Mathematical Society},
     pages = {465--506},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00719-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00719-4/}
}
TY  - JOUR
AU  - Miller, Stephen
AU  - Schmid, Wilfried
TI  - The archimedean theory of the exterior square 𝐿-functions over ℚ
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 465
EP  - 506
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00719-4/
DO  - 10.1090/S0894-0347-2011-00719-4
ID  - 10_1090_S0894_0347_2011_00719_4
ER  - 
%0 Journal Article
%A Miller, Stephen
%A Schmid, Wilfried
%T The archimedean theory of the exterior square 𝐿-functions over ℚ
%J Journal of the American Mathematical Society
%D 2012
%P 465-506
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00719-4/
%R 10.1090/S0894-0347-2011-00719-4
%F 10_1090_S0894_0347_2011_00719_4
Miller, Stephen; Schmid, Wilfried. The archimedean theory of the exterior square 𝐿-functions over ℚ. Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 465-506. doi: 10.1090/S0894-0347-2011-00719-4

[1] Belt, Dustin On Local Exterior-Square L-functions 2011

[2] Bump, Daniel, Friedberg, Solomon The exterior square automorphic 𝐿-functions on 𝐺𝐿(𝑛) 1990 47 65

[3] Casselman, W. Jacquet modules for real reductive groups 1980 557 563

[4] Casselman, W. Canonical extensions of Harish-Chandra modules to representations of 𝐺 Canad. J. Math. 1989 385 438

[5] Casselman, William, Hecht, Henryk, MiliäIä‡, Dragan Bruhat filtrations and Whittaker vectors for real groups 2000 151 190

[6] Dixmier, Jacques, Malliavin, Paul Factorisations de fonctions et de vecteurs indéfiniment différentiables Bull. Sci. Math. (2) 1978 307 330

[7] Fomin, Sergey, Zelevinsky, Andrei Double Bruhat cells and total positivity J. Amer. Math. Soc. 1999 335 380

[8] Godement, Roger, Jacquet, Hervã© Zeta functions of simple algebras 1972

[9] Goodman, Roe, Wallach, Nolan R. Whittaker vectors and conical vectors J. Functional Analysis 1980 199 279

[10] Harris, Michael, Taylor, Richard The geometry and cohomology of some simple Shimura varieties 2001

[11] Henniart, Guy Une preuve simple des conjectures de Langlands pour 𝐺𝐿(𝑛) sur un corps 𝑝-adique Invent. Math. 2000 439 455

[12] Jacquet, H., Shalika, J. A. On Euler products and the classification of automorphic representations. I Amer. J. Math. 1981 499 558

[13] Jacquet, Hervã©, Shalika, Joseph Exterior square 𝐿-functions 1990 143 226

[14] Jacquet, Hervã©, Piatetski-Shapiro, Ilja Iosifovitch, Shalika, Joseph Automorphic forms on 𝐺𝐿(3). I Ann. of Math. (2) 1979 169 212

[15] Jiang, Dihua On the fundamental automorphic 𝐿-functions of 𝑆𝑂(2𝑛+1) Int. Math. Res. Not. 2006

[16] Kim, Henry H. Langlands-Shahidi method and poles of automorphic 𝐿-functions: application to exterior square 𝐿-functions Canad. J. Math. 1999 835 849

[17] Kim, Henry H. Functoriality for the exterior square of 𝐺𝐿₄ and the symmetric fourth of 𝐺𝐿₂ J. Amer. Math. Soc. 2003 139 183

[18] Langlands, R. P. Problems in the theory of automorphic forms 1970 18 61

[19] Langlands, Robert P. Euler products 1971

[20] Langlands, R. P. On the classification of irreducible representations of real algebraic groups 1989 101 170

[21] Miller, Stephen D., Schmid, Wilfried Distributions and analytic continuation of Dirichlet series J. Funct. Anal. 2004 155 220

[22] Miller, Stephen D., Schmid, Wilfried Automorphic distributions, 𝐿-functions, and Voronoi summation for 𝐺𝐿(3) Ann. of Math. (2) 2006 423 488

[23] Miller, Stephen D., Schmid, Wilfried The Rankin-Selberg method for automorphic distributions 2008 111 150

[24] Miller, Stephen D., Schmid, Wilfried Pairings of automorphic distributions

[25] Miller, Stephen D., Schmid, Wilfried Adelization of Automorphic Distributions and Mirabolic Eisenstein Series

[26] Miller, Stephen D., Schmid, Wilfried On the rapid decay of cuspidal automorphic forms

[27] Schmid, Wilfried Automorphic distributions for 𝑆𝐿(2,ℝ) 2000 345 387

[28] Shahidi, Freydoon A proof of Langlands’ conjecture on Plancherel measures Ann. of Math. (2) 1990 273 330

[29] Stade, Eric Mellin transforms of 𝐺𝐿(𝑛,ℝ) Whittaker functions Amer. J. Math. 2001 121 161

[30] Tadiä‡, Marko 𝐺𝐿(𝑛,ℂ)\sphat and 𝔾𝕃(𝕟,ℝ)\sphat 2009 285 313

[31] Vogan, David A., Jr. Gel′fand-Kirillov dimension for Harish-Chandra modules Invent. Math. 1978 75 98

[32] Wallach, Nolan R. Asymptotic expansions of generalized matrix entries of representations of real reductive groups 1983 287 369

[33] ŽElobenko, D. P. Compact Lie groups and their representations 1973

Cité par Sources :