Burkholder integrals, Morrey’s problem and quasiconformal mappings
Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 507-531

Voir la notice de l'article provenant de la source American Mathematical Society

Inspired by Morrey’s Problem (on rank-one convex functionals) and the Burkholder integrals (of his martingale theory) we find that the Burkholder functionals $\text {B}_p$, $p \geqslant 2$, are quasiconcave, when tested on deformations of the identity $f\in \mathrm {Id} + {\mathscr C}^\infty _\circ (\Omega )$ with $\text {B}_p (Df(x)) \geqslant 0$ pointwise, or equivalently, deformations such that $|D f |^2 \leqslant \frac {p}{p-2}J_f$. In particular, quasiconcavity holds in explicit neighbourhoods of the identity map. Among the many immediate consequences, this gives the strongest possible $\mathscr L^p$-estimates for the gradient of a principal solution to the Beltrami equation $f_{\bar {z}}=\mu (z) f_z$, for any $p$ in the critical interval $2\leqslant p \leqslant 1+1/\|\mu \|_\infty$.
DOI : 10.1090/S0894-0347-2011-00718-2

Astala, Kari 1 ; Iwaniec, Tadeusz 2 ; Prause, István 1 ; Saksman, Eero 1

1 Department of Mathematics and Statistics, University of Helsinki, P. O. Box 68, Gustaf Hällströmin katu 2b, FI-00014, Helsinki, Finland
2 Department of Mathematics, Syracuse University, Syracuse, New York 13244, USA, and Department of Mathematics and Statistics, University of Helsinki, P. O. Box 68, Gustaf Hällströmin katu 2b, FI-00014, Helsinki, Finland
@article{10_1090_S0894_0347_2011_00718_2,
     author = {Astala, Kari and Iwaniec, Tadeusz and Prause, Istv\~A{\textexclamdown}n and Saksman, Eero},
     title = {Burkholder integrals, {Morrey\^a€™s} problem and quasiconformal mappings},
     journal = {Journal of the American Mathematical Society},
     pages = {507--531},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00718-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00718-2/}
}
TY  - JOUR
AU  - Astala, Kari
AU  - Iwaniec, Tadeusz
AU  - Prause, István
AU  - Saksman, Eero
TI  - Burkholder integrals, Morrey’s problem and quasiconformal mappings
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 507
EP  - 531
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00718-2/
DO  - 10.1090/S0894-0347-2011-00718-2
ID  - 10_1090_S0894_0347_2011_00718_2
ER  - 
%0 Journal Article
%A Astala, Kari
%A Iwaniec, Tadeusz
%A Prause, István
%A Saksman, Eero
%T Burkholder integrals, Morrey’s problem and quasiconformal mappings
%J Journal of the American Mathematical Society
%D 2012
%P 507-531
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00718-2/
%R 10.1090/S0894-0347-2011-00718-2
%F 10_1090_S0894_0347_2011_00718_2
Astala, Kari; Iwaniec, Tadeusz; Prause, István; Saksman, Eero. Burkholder integrals, Morrey’s problem and quasiconformal mappings. Journal of the American Mathematical Society, Tome 25 (2012) no. 2, pp. 507-531. doi: 10.1090/S0894-0347-2011-00718-2

[1] Ahlfors, Lars V. Lectures on quasiconformal mappings 2006

[2] Ahlfors, Lars, Bers, Lipman Riemann’s mapping theorem for variable metrics Ann. of Math. (2) 1960 385 404

[3] Antman, Stuart S. Fundamental mathematical problems in the theory of nonlinear elasticity 1976 35 54

[4] Astala, Kari Area distortion of quasiconformal mappings Acta Math. 1994 37 60

[5] Astala, Kari, Iwaniec, Tadeusz, Martin, Gaven Elliptic partial differential equations and quasiconformal mappings in the plane 2009

[6] Astala, K., Iwaniec, T., Martin, G. J., Onninen, J. Extremal mappings of finite distortion Proc. London Math. Soc. (3) 2005 655 702

[7] Astala, Kari, Nesi, Vincenzo Composites and quasiconformal mappings: new optimal bounds in two dimensions Calc. Var. Partial Differential Equations 2003 335 355

[8] Baernstein, Albert, Ii, Montgomery-Smith, Stephen J. Some conjectures about integral means of ∂𝑓 and \overline∂𝑓 1999 92 109

[9] Ball, John M. Convexity conditions and existence theorems in nonlinear elasticity Arch. Rational Mech. Anal. 1976/77 337 403

[10] Ball, J. M. Constitutive inequalities and existence theorems in nonlinear elastostatics 1977 187 241

[11] Ball, J. M. Does rank-one convexity imply quasiconvexity? 1987 17 32

[12] Ball, J. M. Sets of gradients with no rank-one connections J. Math. Pures Appl. (9) 1990 241 259

[13] Ball, J. M. The calculus of variations and materials science Quart. Appl. Math. 1998 719 740

[14] Baã±Uelos, Rodrigo, Janakiraman, Prabhu 𝐿^{𝑝}-bounds for the Beurling-Ahlfors transform Trans. Amer. Math. Soc. 2008 3603 3612

[15] Baã±Uelos, Rodrigo, Lindeman, Arthur, Ii A martingale study of the Beurling-Ahlfors transform in 𝑅ⁿ J. Funct. Anal. 1997 224 265

[16] Baã±Uelos, Rodrigo, Wang, Gang Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms Duke Math. J. 1995 575 600

[17] Boyarskiä­, B. V. Homeomorphic solutions of Beltrami systems Dokl. Akad. Nauk SSSR (N.S.) 1955 661 664

[18] Bojarski, B. V. Generalized solutions of a system of differential equations of the first order and elliptic type with discontinuous coefficients 2009

[19] Burkholder, D. L. An elementary proof of an inequality of R. E. A. C. Paley Bull. London Math. Soc. 1985 474 478

[20] Burkholder, D. L. A sharp and strict 𝐿^{𝑝}-inequality for stochastic integrals Ann. Probab. 1987 268 273

[21] Burkholder, Donald L. A proof of Pełczynśki’s conjecture for the Haar system Studia Math. 1988 79 83

[22] Burkholder, Donald L. Sharp inequalities for martingales and stochastic integrals Astérisque 1988 75 94

[23] Ciarlet, Philippe G. Mathematical elasticity. Vol. I 1988

[24] DragiäEviä‡, Oliver, Volberg, Alexander Sharp estimate of the Ahlfors-Beurling operator via averaging martingale transforms Michigan Math. J. 2003 415 435

[25] Faraco, Daniel, Szã©Kelyhidi, Lã¡Szlã³ Tartar’s conjecture and localization of the quasiconvex hull in ℝ^{2×2} Acta Math. 2008 279 305

[26] Geiss, Stefan, Montgomery-Smith, Stephen, Saksman, Eero On singular integral and martingale transforms Trans. Amer. Math. Soc. 2010 553 575

[27] Greco, L., Iwaniec, T. New inequalities for the Jacobian Ann. Inst. H. Poincaré C Anal. Non Linéaire 1994 17 35

[28] Hencl, Stanislav, Koskela, Pekka, Onninen, Jani A note on extremal mappings of finite distortion Math. Res. Lett. 2005 231 237

[29] Lehto, O., Virtanen, K. I. Quasiconformal mappings in the plane 1973

[30] Iwaniec, T. Extremal inequalities in Sobolev spaces and quasiconformal mappings Z. Anal. Anwendungen 1982 1 16

[31] Iwaniec, Tadeusz Nonlinear Cauchy-Riemann operators in ℝⁿ Trans. Amer. Math. Soc. 2002 1961 1995

[32] Iwaniec, Tadeusz, Martin, Gaven Geometric function theory and non-linear analysis 2001

[33] Koskela, Pekka, Onninen, Jani Mappings of finite distortion: decay of the Jacobian in the plane Adv. Calc. Var. 2008 309 321

[34] Maã±Ã©, R., Sad, P., Sullivan, D. On the dynamics of rational maps Ann. Sci. École Norm. Sup. (4) 1983 193 217

[35] Morrey, Charles B., Jr. Quasi-convexity and the lower semicontinuity of multiple integrals Pacific J. Math. 1952 25 53

[36] Morrey, Charles B., Jr. Multiple integrals in the calculus of variations 1966

[37] Mã¼Ller, Stefan A surprising higher integrability property of mappings with positive determinant Bull. Amer. Math. Soc. (N.S.) 1989 245 248

[38] Mã¼Ller, Stefan Rank-one convexity implies quasiconvexity on diagonal matrices Internat. Math. Res. Notices 1999 1087 1095

[39] Nazarov, F., Treil, S., Volberg, A. The Bellman functions and two-weight inequalities for Haar multipliers J. Amer. Math. Soc. 1999 909 928

[40] Nazarov, F., Treil, S., Volberg, A. Bellman function in stochastic control and harmonic analysis 2001 393 423

[41] Pedregal, Pablo, Å Verã¡K, Vladimã­R A note on quasiconvexity and rank-one convexity for 2×2 matrices J. Convex Anal. 1998 107 117

[42] Petermichl, Stefanie, Volberg, Alexander Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular Duke Math. J. 2002 281 305

[43] Rudin, Walter Functional analysis 1991

[44] Å Verã¡K, Vladimã­R Rank-one convexity does not imply quasiconvexity Proc. Roy. Soc. Edinburgh Sect. A 1992 185 189

[45] Vol′Berg, A., Nazarov, F. Heat extension of the Beurling operator and estimates for its norm Algebra i Analiz 2003 142 158

Cité par Sources :