Generic bases for cluster algebras and the Chamber Ansatz
Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 21-76

Voir la notice de l'article provenant de la source American Mathematical Society

Let $Q$ be a finite quiver without oriented cycles, and let $\Lambda$ be the corresponding preprojective algebra. Let $\mathfrak {g}$ be the Kac-Moody Lie algebra with Cartan datum given by $Q$, and let $W$ be its Weyl group. With $w \in W$, there is associated a unipotent cell $N^w$ of the Kac-Moody group with Lie algebra $\mathfrak {g}$. In previous work we proved that the coordinate ring $\mathbb {C}[N^w]$ of $N^w$ is a cluster algebra in a natural way. A central role is played by generating functions $\varphi _X$ of Euler characteristics of certain varieties of partial composition series of $X$, where $X$ runs through all modules in a Frobenius subcategory $\mathcal {C}_w$ of the category of nilpotent $\Lambda$-modules. The first aim of this article is to compare the function $\varphi _X$ with the so-called cluster character of $X$, which is defined in terms of the Euler characteristics of quiver Grassmannians. We show that for every $X$ in $\mathcal {C}_w$, $\varphi _X$ coincides, after an appropriate change of variables, with the cluster character of Fu and Keller associated with $X$ using any cluster-tilting object $T$ of $\mathcal {C}_w$. A crucial ingredient of the proof is the construction of an isomorphism between varieties of partial composition series of $X$ and certain quiver Grassmannians. This isomorphism is obtained in a very general setup and should be of interest in itself. Another important tool of the proof is a representation-theoretic version of the Chamber Ansatz of Berenstein, Fomin and Zelevinsky, adapted to Kac-Moody groups. As an application, we get a new description of a generic basis of the cluster algebra $\mathcal {A}(\underline {\Gamma }_T)$ obtained from $\mathcal {C}[N^w]$ via specialization of coefficients to 1. Here generic refers to the representation varieties of a quiver potential arising from the cluster-tilting module $T$. For the special case of coefficient-free acyclic cluster algebras this proves a conjecture by Dupont.
DOI : 10.1090/S0894-0347-2011-00715-7

Geiß, Christof 1 ; Leclerc, Bernard 2 ; Schröer, Jan 3

1 Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México D.F., México
2 LMNO, Université de Caen, CNRS, UMR 6139, F-14032 Caen Cedex, France
3 Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
@article{10_1090_S0894_0347_2011_00715_7,
     author = {Gei\~AŸ, Christof and Leclerc, Bernard and Schr\~A{\textparagraph}er, Jan},
     title = {Generic bases for cluster algebras and the {Chamber} {Ansatz}},
     journal = {Journal of the American Mathematical Society},
     pages = {21--76},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00715-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00715-7/}
}
TY  - JOUR
AU  - Geiß, Christof
AU  - Leclerc, Bernard
AU  - Schröer, Jan
TI  - Generic bases for cluster algebras and the Chamber Ansatz
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 21
EP  - 76
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00715-7/
DO  - 10.1090/S0894-0347-2011-00715-7
ID  - 10_1090_S0894_0347_2011_00715_7
ER  - 
%0 Journal Article
%A Geiß, Christof
%A Leclerc, Bernard
%A Schröer, Jan
%T Generic bases for cluster algebras and the Chamber Ansatz
%J Journal of the American Mathematical Society
%D 2012
%P 21-76
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00715-7/
%R 10.1090/S0894-0347-2011-00715-7
%F 10_1090_S0894_0347_2011_00715_7
Geiß, Christof; Leclerc, Bernard; Schröer, Jan. Generic bases for cluster algebras and the Chamber Ansatz. Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 21-76. doi: 10.1090/S0894-0347-2011-00715-7

[1] Amiot, Claire Cluster categories for algebras of global dimension 2 and quivers with potential Ann. Inst. Fourier (Grenoble) 2009 2525 2590

[2] Amiot, Claire, Reiten, Idun, Todorov, Gordana The ubiquity of generalized cluster categories Adv. Math. 2011 3813 3849

[3] Berenstein, Arkady, Fomin, Sergey, Zelevinsky, Andrei Parametrizations of canonical bases and totally positive matrices Adv. Math. 1996 49 149

[4] Berenstein, Arkady, Zelevinsky, Andrei Total positivity in Schubert varieties Comment. Math. Helv. 1997 128 166

[5] Bongartz, Klaus Minimal singularities for representations of Dynkin quivers Comment. Math. Helv. 1994 575 611

[6] Buan, A. B., Iyama, O., Reiten, I., Scott, J. Cluster structures for 2-Calabi-Yau categories and unipotent groups Compos. Math. 2009 1035 1079

[7] Caldero, Philippe, Chapoton, Frã©Dã©Ric Cluster algebras as Hall algebras of quiver representations Comment. Math. Helv. 2006 595 616

[8] Caldero, Philippe, Keller, Bernhard From triangulated categories to cluster algebras Invent. Math. 2008 169 211

[9] Crawley-Boevey, William On the exceptional fibres of Kleinian singularities Amer. J. Math. 2000 1027 1037

[10] Crawley-Boevey, William, Schrã¶Er, Jan Irreducible components of varieties of modules J. Reine Angew. Math. 2002 201 220

[11] Derksen, Harm, Weyman, Jerzy, Zelevinsky, Andrei Quivers with potentials and their representations. I. Mutations Selecta Math. (N.S.) 2008 59 119

[12] Derksen, Harm, Weyman, Jerzy, Zelevinsky, Andrei Quivers with potentials and their representations II: applications to cluster algebras J. Amer. Math. Soc. 2010 749 790

[13] Drozd, Yurij A., Kirichenko, Vladimir V. Finite-dimensional algebras 1994

[14] Fomin, Sergey, Zelevinsky, Andrei Cluster algebras. I. Foundations J. Amer. Math. Soc. 2002 497 529

[15] Fomin, Sergey, Zelevinsky, Andrei Cluster algebras. IV. Coefficients Compos. Math. 2007 112 164

[16] Fu, Changjian, Keller, Bernhard On cluster algebras with coefficients and 2-Calabi-Yau categories Trans. Amer. Math. Soc. 2010 859 895

[17] Gabriel, Peter Finite representation type is open 1974

[18] Geiss, Christof, Leclerc, Bernard, Schrã¶Er, Jan Semicanonical bases and preprojective algebras Ann. Sci. École Norm. Sup. (4) 2005 193 253

[19] GeiãŸ, Christof, Leclerc, Bernard, Schrã¶Er, Jan Rigid modules over preprojective algebras Invent. Math. 2006 589 632

[20] Geiss, Christof, Leclerc, Bernard, Schrã¶Er, Jan Partial flag varieties and preprojective algebras Ann. Inst. Fourier (Grenoble) 2008 825 876

[21] Happel, Dieter Triangulated categories in the representation theory of finite-dimensional algebras 1988

[22] Keller, Bernhard, Reiten, Idun Cluster-tilted algebras are Gorenstein and stably Calabi-Yau Adv. Math. 2007 123 151

[23] Keller, Bernhard, Yang, Dong Derived equivalences from mutations of quivers with potential Adv. Math. 2011 2118 2168

[24] Kumar, Shrawan Kac-Moody groups, their flag varieties and representation theory 2002

[25] Lusztig, G. Quivers, perverse sheaves, and quantized enveloping algebras J. Amer. Math. Soc. 1991 365 421

[26] Lusztig, G. Total positivity in reductive groups 1994 531 568

[27] Palu, Yann Cluster characters for 2-Calabi-Yau triangulated categories Ann. Inst. Fourier (Grenoble) 2008 2221 2248

Cité par Sources :