Equivalences between fusion systems of finite groups of Lie type
Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 1-20

Voir la notice de l'article provenant de la source American Mathematical Society

We prove, for certain pairs $G,G’$ of finite groups of Lie type, that the $p$-fusion systems $\mathcal {F}_p(G)$ and $\mathcal {F}_p(G’)$ are equivalent. In other words, there is an isomorphism between a Sylow $p$-subgroup of $G$ and one of $G’$ which preserves $p$-fusion. This occurs, for example, when $G=\mathbb {G}(q)$ and $G’=\mathbb {G}(q’)$ for a simple Lie “type” $\mathbb {G}$, and $q$ and $q’$ are prime powers, both prime to $p$, which generate the same closed subgroup of $p$-adic units. Our proof uses homotopy-theoretic properties of the $p$-completed classifying spaces of $G$ and $G’$, and we know of no purely algebraic proof of this result.
DOI : 10.1090/S0894-0347-2011-00713-3

Broto, Carles 1 ; Møller, Jesper 2 ; Oliver, Bob 3

1 Departament de Matemàtiques, Universitat Autònoma de Barcelona, E–08193 Bellaterra, Spain
2 Matematisk Institut, Universitetsparken 5, DK–2100 København, Denmark
3 LAGA, Institut Galilée, Av. J-B Clément, F–93430 Villetaneuse, France
@article{10_1090_S0894_0347_2011_00713_3,
     author = {Broto, Carles and M\~A¸ller, Jesper and Oliver, Bob},
     title = {Equivalences between fusion systems of finite groups of {Lie} type},
     journal = {Journal of the American Mathematical Society},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00713-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00713-3/}
}
TY  - JOUR
AU  - Broto, Carles
AU  - Møller, Jesper
AU  - Oliver, Bob
TI  - Equivalences between fusion systems of finite groups of Lie type
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 1
EP  - 20
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00713-3/
DO  - 10.1090/S0894-0347-2011-00713-3
ID  - 10_1090_S0894_0347_2011_00713_3
ER  - 
%0 Journal Article
%A Broto, Carles
%A Møller, Jesper
%A Oliver, Bob
%T Equivalences between fusion systems of finite groups of Lie type
%J Journal of the American Mathematical Society
%D 2012
%P 1-20
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00713-3/
%R 10.1090/S0894-0347-2011-00713-3
%F 10_1090_S0894_0347_2011_00713_3
Broto, Carles; Møller, Jesper; Oliver, Bob. Equivalences between fusion systems of finite groups of Lie type. Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 1-20. doi: 10.1090/S0894-0347-2011-00713-3

[1] Andersen, K. K. S., Grodal, J., Mã¸Ller, J. M., Viruel, A. The classification of 𝑝-compact groups for 𝑝 odd Ann. of Math. (2) 2008 95 210

[2] Aschbacher, Michael Finite group theory 1986

[3] Borel, Armand Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts Ann. of Math. (2) 1953 115 207

[4] Bousfield, A. K., Kan, D. M. Homotopy limits, completions and localizations 1972

[5] Bredon, Glen E. Equivariant cohomology theories 1967

[6] Brã¶Cker, Theodor, Tom Dieck, Tammo Representations of compact Lie groups 1985

[7] Broto, C., Castellana, N., Grodal, J., Levi, R., Oliver, B. Extensions of 𝑝-local finite groups Trans. Amer. Math. Soc. 2007 3791 3858

[8] Broto, Carles, Mã¸Ller, Jesper M. Chevalley 𝑝-local finite groups Algebr. Geom. Topol. 2007 1809 1919

[9] Dwyer, W. G., Wilkerson, C. W. Homotopy fixed-point methods for Lie groups and finite loop spaces Ann. of Math. (2) 1994 395 442

[10] Fong, Paul, Milgram, R. James On the geometry and cohomology of the simple groups 𝐺₂(𝑞) and ³𝐷₄(𝑞) 1998 221 244

[11] Friedlander, Eric M. Étale homotopy of simplicial schemes 1982

[12] Gorenstein, Daniel Finite groups 1968

[13] Gorenstein, Daniel, Lyons, Richard, Solomon, Ronald The classification of the finite simple groups. Number 3. Part I. Chapter A 1998

[14] Griess, Robert L., Jr., Ryba, A. J. E. Embeddings of 𝑃𝐺𝐿₂(31) and 𝑆𝐿₂(32) in 𝐸₈(𝐂) Duke Math. J. 1998 181 211

[15] Hatcher, Allen Algebraic topology 2002

[16] Jackowski, Stefan, Mcclure, James, Oliver, Bob Self-homotopy equivalences of classifying spaces of compact connected Lie groups Fund. Math. 1995 99 126

[17] Kleidman, Peter B. The maximal subgroups of the Steinberg triality groups ³𝐷₄(𝑞) and of their automorphism groups J. Algebra 1988 182 199

[18] Kleidman, Peter B. The maximal subgroups of the Chevalley groups 𝐺₂(𝑞) with 𝑞 odd, the Ree groups ²𝐺₂(𝑞), and their automorphism groups J. Algebra 1988 30 71

[19] Martino, John, Priddy, Stewart Unstable homotopy classification of 𝐵𝐺_{𝑝}\sphat Math. Proc. Cambridge Philos. Soc. 1996 119 137

[20] Milgram, R. James On the geometry and cohomology of the simple groups 𝐺₂(𝑞) and ³𝐷₄(𝑞). II 1998 397 418

[21] Mislin, Guido On group homomorphisms inducing mod-𝑝 cohomology isomorphisms Comment. Math. Helv. 1990 454 461

[22] Mã¸Ller, Jesper M. 𝑁-determined 2-compact groups. I Fund. Math. 2007 11 84

[23] Mã¸Ller, J. M., Notbohm, D. Centers and finite coverings of finite loop spaces J. Reine Angew. Math. 1994 99 133

[24] Oliver, Bob Equivalences of classifying spaces completed at odd primes Math. Proc. Cambridge Philos. Soc. 2004 321 347

[25] Oliver, Bob Equivalences of classifying spaces completed at the prime two Mem. Amer. Math. Soc. 2006

[26] Serre, Jean-Pierre Linear representations of finite groups 1977

[27] Shephard, G. C., Todd, J. A. Finite unitary reflection groups Canad. J. Math. 1954 274 304

Cité par Sources :