Voir la notice de l'article provenant de la source American Mathematical Society
Poonen, Bjorn 1 ; Rains, Eric 2
@article{10_1090_S0894_0347_2011_00710_8,
     author = {Poonen, Bjorn and Rains, Eric},
     title = {Random maximal isotropic subspaces and {Selmer} groups},
     journal = {Journal of the American Mathematical Society},
     pages = {245--269},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00710-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00710-8/}
}
                      
                      
                    TY - JOUR AU - Poonen, Bjorn AU - Rains, Eric TI - Random maximal isotropic subspaces and Selmer groups JO - Journal of the American Mathematical Society PY - 2012 SP - 245 EP - 269 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00710-8/ DO - 10.1090/S0894-0347-2011-00710-8 ID - 10_1090_S0894_0347_2011_00710_8 ER -
%0 Journal Article %A Poonen, Bjorn %A Rains, Eric %T Random maximal isotropic subspaces and Selmer groups %J Journal of the American Mathematical Society %D 2012 %P 245-269 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00710-8/ %R 10.1090/S0894-0347-2011-00710-8 %F 10_1090_S0894_0347_2011_00710_8
Poonen, Bjorn; Rains, Eric. Random maximal isotropic subspaces and Selmer groups. Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 245-269. doi: 10.1090/S0894-0347-2011-00710-8
[1] , Cohomology of groups 1967 94 115
[2] , Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves 2010-06-09
[3] , Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0 2010-07-01
[4] Integration. I. Chapters 1â6 2004
[5] Sur les groupes topologiques localement compacts J. Math. Pures Appl. (9) 1948 1 85
[6] , , Generalized explicit descent and its application to curves of genus 3 2010-07-24
[7] Mémoire sur les fonctions dont plusieurs valeurs sont liées entre elles par une équation linéaire, et sur diverses transformations de produits composés dâun nombre indéfini de facteurs C. R. Acad. Sci. Paris 1843 523 531
[8] , Heuristics on class groups of number fields 1984 33 62
[9] Counting elliptic surfaces over finite fields Mosc. Math. J. 2002 281 311
[10] Heuristics on Tate-Shafarevitch groups of elliptic curves defined over â Experiment. Math. 2001 191 196
[11] Heuristics on class groups and on Tate-Shafarevich groups: the magic of the Cohen-Lenstra heuristics 2007 323 340
[12] Elliptic curves with no exceptional primes C. R. Acad. Sci. Paris Sér. I Math. 1997 813 818
[13] The flag-transitive collineation groups of the finite Desarguesian affine planes Canadian J. Math. 1964 443 472
[14] , Central simple algebras and Galois cohomology 2006
[15] Conjectures on elliptic curves over quadratic fields 1979 108 118
[16] Arithmetic duality theorems for 1-motives over function fields J. Reine Angew. Math. 2009 203 231
[17] Algebraic geometry 1977
[18] The size of Selmer groups for the congruent number problem Invent. Math. 1993 171 195
[19] The size of Selmer groups for the congruent number problem. II Invent. Math. 1994 331 370
[20] Almost all elliptic curves are Serre curves Trans. Amer. Math. Soc. 2010 1547 1570
[21] On cardinal numbers related with a compact Abelian group Proc. Imp. Acad. Tokyo 1943 366 372
[22] On the ranks of the 2-Selmer groups of twists of a given elliptic curve 2011-03-09
[23] On the distribution of normal point groups Proc. Nat. Acad. Sci. U.S.A. 1940 294 297
[24] , Zeroes of zeta functions and symmetry Bull. Amer. Math. Soc. (N.S.) 1999 1 26
[25] Algebraic groups over finite fields Amer. J. Math. 1956 555 563
[26] , Ranks of twists of elliptic curves and Hilbertâs tenth problem Invent. Math. 2010 541 575
[27] Ãtale cohomology 1980
[28] Arithmetic duality theorems 2006
[29] Abelian varieties 1970
[30] Theta characteristics of an algebraic curve Ann. Sci. Ãcole Norm. Sup. (4) 1971 181 192
[31] Tata lectures on theta. III 1991
[32] The period-index obstruction for elliptic curves J. Number Theory 2002 329 339
[33] Abelian varieties, theta functions and the Fourier transform 2003
[34] First cohomology groups of some linear groups over fields of characteristic two Illinois J. Math. 1971 393 417
[35] , Self cup products and the theta characteristic torsor 2011-04-10
[36] , The Cassels-Tate pairing on polarized abelian varieties Ann. of Math. (2) 1999 1109 1149
[37] Systematisches Lehrbuch der Arithmetik 1811
[38] Quadratic and Hermitian forms 1985
[39] The effect of twisting on the 2-Selmer group Math. Proc. Cambridge Philos. Soc. 2008 513 526
[40] Locally bicompact abelian groups and their character groups Ann. of Math. (2) 1935 448 463
[41] Sur certains groupes dâopérateurs unitaires Acta Math. 1964 143 211
[42] Average size of 2-Selmer groups of elliptic curves. II Acta Arith. 2005 1 33
[43] Average size of 2-Selmer groups of elliptic curves. I Trans. Amer. Math. Soc. 2006 1563 1584
[44] Noncommutative cohomology and Mumford groups Mat. Zametki 1974 415 419
Cité par Sources :
