Random maximal isotropic subspaces and Selmer groups
Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 245-269

Voir la notice de l'article provenant de la source American Mathematical Society

Under suitable hypotheses, we construct a probability measure on the set of closed maximal isotropic subspaces of a locally compact quadratic space over $\mathbb {F}_p$. A random subspace chosen with respect to this measure is discrete with probability $1$, and the dimension of its intersection with a fixed compact open maximal isotropic subspace is a certain nonnegative-integer-valued random variable. We then prove that the $p$-Selmer group of an elliptic curve is naturally the intersection of a discrete maximal isotropic subspace with a compact open maximal isotropic subspace in a locally compact quadratic space over $\mathbb {F}_p$. By modeling the first subspace as being random, we can explain the known phenomena regarding distribution of Selmer ranks, such as the theorems of Heath-Brown, Swinnerton-Dyer, and Kane for $2$-Selmer groups in certain families of quadratic twists, and the average size of $2$- and $3$-Selmer groups as computed by Bhargava and Shankar. Our model is compatible with Delaunay’s heuristics for $p$-torsion in Shafarevich-Tate groups, and predicts that the average rank of elliptic curves over a fixed number field is at most $1/2$. Many of our results generalize to abelian varieties over global fields.
DOI : 10.1090/S0894-0347-2011-00710-8

Poonen, Bjorn 1 ; Rains, Eric 2

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
2 Department of Mathematics, California Institute of Technology, Pasadena, California 91125
@article{10_1090_S0894_0347_2011_00710_8,
     author = {Poonen, Bjorn and Rains, Eric},
     title = {Random maximal isotropic subspaces and {Selmer} groups},
     journal = {Journal of the American Mathematical Society},
     pages = {245--269},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00710-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00710-8/}
}
TY  - JOUR
AU  - Poonen, Bjorn
AU  - Rains, Eric
TI  - Random maximal isotropic subspaces and Selmer groups
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 245
EP  - 269
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00710-8/
DO  - 10.1090/S0894-0347-2011-00710-8
ID  - 10_1090_S0894_0347_2011_00710_8
ER  - 
%0 Journal Article
%A Poonen, Bjorn
%A Rains, Eric
%T Random maximal isotropic subspaces and Selmer groups
%J Journal of the American Mathematical Society
%D 2012
%P 245-269
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00710-8/
%R 10.1090/S0894-0347-2011-00710-8
%F 10_1090_S0894_0347_2011_00710_8
Poonen, Bjorn; Rains, Eric. Random maximal isotropic subspaces and Selmer groups. Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 245-269. doi: 10.1090/S0894-0347-2011-00710-8

[1] Atiyah, M. F., Wall, C. T. C. Cohomology of groups 1967 94 115

[2] Bhargava, Manjul, Shankar, Arul Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves 2010-06-09

[3] Bhargava, Manjul, Shankar, Arul Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0 2010-07-01

[4] Bourbaki, Nicolas Integration. I. Chapters 1–6 2004

[5] Braconnier, Jean Sur les groupes topologiques localement compacts J. Math. Pures Appl. (9) 1948 1 85

[6] Bruin, Nils, Poonen, Bjorn, Stoll, Michael Generalized explicit descent and its application to curves of genus 3 2010-07-24

[7] Cauchy, A. Mémoire sur les fonctions dont plusieurs valeurs sont liées entre elles par une équation linéaire, et sur diverses transformations de produits composés d’un nombre indéfini de facteurs C. R. Acad. Sci. Paris 1843 523 531

[8] Cohen, H., Lenstra, H. W., Jr. Heuristics on class groups of number fields 1984 33 62

[9] De Jong, A. J. Counting elliptic surfaces over finite fields Mosc. Math. J. 2002 281 311

[10] Delaunay, Christophe Heuristics on Tate-Shafarevitch groups of elliptic curves defined over ℚ Experiment. Math. 2001 191 196

[11] Delaunay, Christophe Heuristics on class groups and on Tate-Shafarevich groups: the magic of the Cohen-Lenstra heuristics 2007 323 340

[12] Duke, William Elliptic curves with no exceptional primes C. R. Acad. Sci. Paris Sér. I Math. 1997 813 818

[13] Foulser, David A. The flag-transitive collineation groups of the finite Desarguesian affine planes Canadian J. Math. 1964 443 472

[14] Gille, Philippe, Szamuely, Tamã¡S Central simple algebras and Galois cohomology 2006

[15] Goldfeld, Dorian Conjectures on elliptic curves over quadratic fields 1979 108 118

[16] Gonzã¡Lez-Avilã©S, Cristian D. Arithmetic duality theorems for 1-motives over function fields J. Reine Angew. Math. 2009 203 231

[17] Hartshorne, Robin Algebraic geometry 1977

[18] Heath-Brown, D. R. The size of Selmer groups for the congruent number problem Invent. Math. 1993 171 195

[19] Heath-Brown, D. R. The size of Selmer groups for the congruent number problem. II Invent. Math. 1994 331 370

[20] Jones, Nathan Almost all elliptic curves are Serre curves Trans. Amer. Math. Soc. 2010 1547 1570

[21] Kakutani, Shizuo On cardinal numbers related with a compact Abelian group Proc. Imp. Acad. Tokyo 1943 366 372

[22] Kane, Daniel M. On the ranks of the 2-Selmer groups of twists of a given elliptic curve 2011-03-09

[23] Erdã¶S, P. On the distribution of normal point groups Proc. Nat. Acad. Sci. U.S.A. 1940 294 297

[24] Katz, Nicholas M., Sarnak, Peter Zeroes of zeta functions and symmetry Bull. Amer. Math. Soc. (N.S.) 1999 1 26

[25] Lang, Serge Algebraic groups over finite fields Amer. J. Math. 1956 555 563

[26] Mazur, B., Rubin, K. Ranks of twists of elliptic curves and Hilbert’s tenth problem Invent. Math. 2010 541 575

[27] Milne, James S. Étale cohomology 1980

[28] Milne, J. S. Arithmetic duality theorems 2006

[29] Mumford, David Abelian varieties 1970

[30] Mumford, David Theta characteristics of an algebraic curve Ann. Sci. École Norm. Sup. (4) 1971 181 192

[31] Mumford, David Tata lectures on theta. III 1991

[32] O’Neil, Catherine The period-index obstruction for elliptic curves J. Number Theory 2002 329 339

[33] Polishchuk, Alexander Abelian varieties, theta functions and the Fourier transform 2003

[34] Pollatsek, Harriet First cohomology groups of some linear groups over fields of characteristic two Illinois J. Math. 1971 393 417

[35] Poonen, Bjorn, Rains, Eric Self cup products and the theta characteristic torsor 2011-04-10

[36] Poonen, Bjorn, Stoll, Michael The Cassels-Tate pairing on polarized abelian varieties Ann. of Math. (2) 1999 1109 1149

[37] Rothe, H. A. Systematisches Lehrbuch der Arithmetik 1811

[38] Scharlau, Winfried Quadratic and Hermitian forms 1985

[39] Swinnerton-Dyer, Peter The effect of twisting on the 2-Selmer group Math. Proc. Cambridge Philos. Soc. 2008 513 526

[40] Van Kampen, E. R. Locally bicompact abelian groups and their character groups Ann. of Math. (2) 1935 448 463

[41] Weil, Andr㩠Sur certains groupes d’opérateurs unitaires Acta Math. 1964 143 211

[42] Yu, Gang Average size of 2-Selmer groups of elliptic curves. II Acta Arith. 2005 1 33

[43] Yu, Gang Average size of 2-Selmer groups of elliptic curves. I Trans. Amer. Math. Soc. 2006 1563 1584

[44] Zarhin, Ju. G. Noncommutative cohomology and Mumford groups Mat. Zametki 1974 415 419

Cité par Sources :