Products of conjugacy classes and fixed point spaces
Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 77-121

Voir la notice de l'article provenant de la source American Mathematical Society

We prove several results on products of conjugacy classes in finite simple groups. The first result is that for any finite nonabelian simple groups, there exists a triple of conjugate elements with product $1$ which generate the group. This result and other ideas are used to solve a 1966 conjecture of Peter Neumann about the existence of elements in an irreducible linear group with small fixed space. We also show that there always exist two conjugacy classes in a finite nonabelian simple group whose product contains every nontrivial element of the group. We use this to show that every element in a nonabelian finite simple group can be written as a product of two $r$th powers for any prime power $r$ (in particular, a product of two squares answering a conjecture of Larsen, Shalev and Tiep).
DOI : 10.1090/S0894-0347-2011-00709-1

Guralnick, Robert 1 ; Malle, Gunter 2

1 Department of Mathematics, University of Southern California, 3620 S. Vermont Avenue, Los Angeles, California 90089-2532
2 FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
@article{10_1090_S0894_0347_2011_00709_1,
     author = {Guralnick, Robert and Malle, Gunter},
     title = {Products of conjugacy classes and fixed point spaces},
     journal = {Journal of the American Mathematical Society},
     pages = {77--121},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00709-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00709-1/}
}
TY  - JOUR
AU  - Guralnick, Robert
AU  - Malle, Gunter
TI  - Products of conjugacy classes and fixed point spaces
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 77
EP  - 121
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00709-1/
DO  - 10.1090/S0894-0347-2011-00709-1
ID  - 10_1090_S0894_0347_2011_00709_1
ER  - 
%0 Journal Article
%A Guralnick, Robert
%A Malle, Gunter
%T Products of conjugacy classes and fixed point spaces
%J Journal of the American Mathematical Society
%D 2012
%P 77-121
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00709-1/
%R 10.1090/S0894-0347-2011-00709-1
%F 10_1090_S0894_0347_2011_00709_1
Guralnick, Robert; Malle, Gunter. Products of conjugacy classes and fixed point spaces. Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 77-121. doi: 10.1090/S0894-0347-2011-00709-1

[1] Bamberg, John, Penttila, Tim Overgroups of cyclic Sylow subgroups of linear groups Comm. Algebra 2008 2503 2543

[2] Bauer, Ingrid, Catanese, Fabrizio, Grunewald, Fritz Beauville surfaces without real structures 2005 1 42

[3] Bauer, Ingrid, Catanese, Fabrizio, Grunewald, Fritz Chebycheff and Belyi polynomials, dessins d’enfants, Beauville surfaces and group theory Mediterr. J. Math. 2006 121 146

[4] Bertram, Edward Even permutations as a product of two conjugate cycles J. Combinatorial Theory Ser. A 1972 368 380

[5] Breuer, Thomas, Guralnick, Robert M., Kantor, William M. Probabilistic generation of finite simple groups. II J. Algebra 2008 443 494

[6] Carter, Roger W. Finite groups of Lie type 1993

[7] Chernousov, Vladimir, Ellers, Erich W., Gordeev, Nikolai Gauss decomposition with prescribed semisimple part: short proof J. Algebra 2000 314 332

[8] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A. 𝔸𝕋𝕃𝔸𝕊 of finite groups 1985

[9] Cooperstein, Bruce N. Maximal subgroups of 𝐺₂(2ⁿ) J. Algebra 1981 23 36

[10] Cooperstein, Bruce N. Subgroups of exceptional groups of Lie type generated by long root elements. I. Odd characteristic J. Algebra 1981 270 282

[11] Digne, Franã§Ois, Michel, Jean Representations of finite groups of Lie type 1991

[12] Ellers, Erich W., Gordeev, Nikolai On the conjectures of J. Thompson and O. Ore Trans. Amer. Math. Soc. 1998 3657 3671

[13] Feit, Walter On large Zsigmondy primes Proc. Amer. Math. Soc. 1988 29 36

[14] Fong, Paul, Srinivasan, Bhama The blocks of finite general linear and unitary groups Invent. Math. 1982 109 153

[15] Fong, Paul, Srinivasan, Bhama Brauer trees in classical groups J. Algebra 1990 179 225

[16] Geck, Meinolf, Hiss, Gerhard, Lã¼Beck, Frank, Malle, Gunter, Pfeiffer, Gã¶Tz CHEVIE—a system for computing and processing generic character tables Appl. Algebra Engrg. Comm. Comput. 1996 175 210

[17] Gluck, David Sharper character value estimates for groups of Lie type J. Algebra 1995 229 266

[18] Gow, Rod Commutators in finite simple groups of Lie type Bull. London Math. Soc. 2000 311 315

[19] Guralnick, Robert M. Some applications of subgroup structure to probabilistic generation and covers of curves 1998 301 320

[20] Guralnick, Robert M., Kantor, William M. Probabilistic generation of finite simple groups J. Algebra 2000 743 792

[21] Guralnick, Robert M., Marã³Ti, Attila Average dimension of fixed point spaces with applications Adv. Math. 2011 298 308

[22] Guralnick, Robert M., Neubauer, Michael G. Monodromy groups of branched coverings: the generic case 1995 325 352

[23] Guralnick, Robert, Penttila, Tim, Praeger, Cheryl E., Saxl, Jan Linear groups with orders having certain large prime divisors Proc. London Math. Soc. (3) 1999 167 214

[24] Hering, Christoph Transitive linear groups and linear groups which contain irreducible subgroups of prime order Geometriae Dedicata 1974 425 460

[25] Hiss, Gerhard, Malle, Gunter Low-dimensional representations of quasi-simple groups LMS J. Comput. Math. 2001 22 63

[26] Hoffman, P. N., Humphreys, J. F. Projective representations of the symmetric groups 1992

[27] Isaacs, I. M., Keller, Thomas Michael, Meierfrankenfeld, U., Moretã³, Alexander Fixed point spaces, primitive character degrees and conjugacy class sizes Proc. Amer. Math. Soc. 2006 3123 3130

[28] Kleidman, Peter B. The maximal subgroups of the finite 8-dimensional orthogonal groups 𝑃Ω⁺₈(𝑞) and of their automorphism groups J. Algebra 1987 173 242

[29] Kleidman, Peter B. The maximal subgroups of the Chevalley groups 𝐺₂(𝑞) with 𝑞 odd, the Ree groups ²𝐺₂(𝑞), and their automorphism groups J. Algebra 1988 30 71

[30] Larsen, Michael, Shalev, Aner Characters of symmetric groups: sharp bounds and applications Invent. Math. 2008 645 687

[31] Liebeck, Martin W., Saxl, Jan Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces Proc. London Math. Soc. (3) 1991 266 314

[32] Liebeck, Martin W., Seitz, Gary M. A survey of maximal subgroups of exceptional groups of Lie type 2003 139 146

[33] Lã¼Beck, Frank Smallest degrees of representations of exceptional groups of Lie type Comm. Algebra 2001 2147 2169

[34] Lã¼Beck, Frank, Malle, Gunter (2,3)-generation of exceptional groups J. London Math. Soc. (2) 1999 109 122

[35] Macbeath, A. M. Generators of the linear fractional groups 1969 14 32

[36] Malle, Gunter Die unipotenten Charaktere von ²𝐹₄(𝑞²) Comm. Algebra 1990 2361 2381

[37] Malle, Gunter, Matzat, B. Heinrich Inverse Galois theory 1999

[38] Malle, Gunter, Saxl, Jan, Weigel, Thomas Generation of classical groups Geom. Dedicata 1994 85 116

[39] Ryba, Alexander J. E. Short proofs of embeddings into exceptional groups of Lie type J. Algebra 2002 402 418

[40] Scott, Leonard L. Matrices and cohomology Ann. of Math. (2) 1977 473 492

[41] Segal, Dan, Shalev, Aner On groups with bounded conjugacy classes Quart. J. Math. Oxford Ser. (2) 1999 505 516

[42] Tiep, Pham Huu, Zalesskii, Alexander E. Minimal characters of the finite classical groups Comm. Algebra 1996 2093 2167

[43] Weigel, Thomas S. Generation of exceptional groups of Lie-type Geom. Dedicata 1992 63 87

[44] Wielandt, Helmut Finite permutation groups 1964

[45] Williamson, Alan On primitive permutation groups containing a cycle Math. Z. 1973 159 162

Cité par Sources :