Stable group theory and approximate subgroups
Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 189-243

Voir la notice de l'article provenant de la source American Mathematical Society

We note a parallel between some ideas of stable model theory and certain topics in finite combinatorics related to the sum-product phenomenon. For a simple linear group $G$, we show that a finite subset $X$ with $|X X ^{-1}X |/ |X|$ bounded is close to a finite subgroup, or else to a subset of a proper algebraic subgroup of $G$. We also find a connection with Lie groups, and use it to obtain some consequences suggestive of topological nilpotence. Model-theoretically we prove the independence theorem and the stabilizer theorem in a general first-order setting.
DOI : 10.1090/S0894-0347-2011-00708-X

Hrushovski, Ehud 1

1 Institute of Mathematics, Hebrew University at Jerusalem, Giv’at Ram, 91904 Jerusalem, Israel
@article{10_1090_S0894_0347_2011_00708_X,
     author = {Hrushovski, Ehud},
     title = {Stable group theory and approximate subgroups},
     journal = {Journal of the American Mathematical Society},
     pages = {189--243},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2012},
     doi = {10.1090/S0894-0347-2011-00708-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00708-X/}
}
TY  - JOUR
AU  - Hrushovski, Ehud
TI  - Stable group theory and approximate subgroups
JO  - Journal of the American Mathematical Society
PY  - 2012
SP  - 189
EP  - 243
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00708-X/
DO  - 10.1090/S0894-0347-2011-00708-X
ID  - 10_1090_S0894_0347_2011_00708_X
ER  - 
%0 Journal Article
%A Hrushovski, Ehud
%T Stable group theory and approximate subgroups
%J Journal of the American Mathematical Society
%D 2012
%P 189-243
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00708-X/
%R 10.1090/S0894-0347-2011-00708-X
%F 10_1090_S0894_0347_2011_00708_X
Hrushovski, Ehud. Stable group theory and approximate subgroups. Journal of the American Mathematical Society, Tome 25 (2012) no. 1, pp. 189-243. doi: 10.1090/S0894-0347-2011-00708-X

[1] Ben Yaacov, Itaã¯, Usvyatsov, Alexander Continuous first order logic and local stability Trans. Amer. Math. Soc. 2010 5213 5259

[2] Bergman, George M., Lenstra, Hendrik W., Jr. Subgroups close to normal subgroups J. Algebra 1989 80 97

[3] Bourgain, J., Katz, N., Tao, T. A sum-product estimate in finite fields, and applications Geom. Funct. Anal. 2004 27 57

[4] Chang, C. C., Keisler, H. J. Model theory 1990

[5] Chang, Mei-Chu Product theorems in 𝑆𝐿₂ and 𝑆𝐿₃ J. Inst. Math. Jussieu 2008 1 25

[6] Cherlin, Gregory, Hrushovski, Ehud Finite structures with few types 2003

[7] Curtis, Charles W., Reiner, Irving Representation theory of finite groups and associative algebras 2006

[8] Elekes, Gyã¶Rgy, Kirã¡Ly, Zoltã¡N On the combinatorics of projective mappings J. Algebraic Combin. 2001 183 197

[9] Van Den Dries, L., Wilkie, A. J. Gromov’s theorem on groups of polynomial growth and elementary logic J. Algebra 1984 349 374

[10] Erdå‘S, P., Szemerã©Di, E. On sums and products of integers 1983 213 218

[11] Gleason, A. M. The structure of locally compact groups Duke Math. J. 1951 85 104

[12] Goldbring, Isaac Hilbert’s fifth problem for local groups Ann. of Math. (2) 2010 1269 1314

[13] Green, Ben, Sanders, Tom A quantitative version of the idempotent theorem in harmonic analysis Ann. of Math. (2) 2008 1025 1054

[14] Gromov, Mikhael Groups of polynomial growth and expanding maps Inst. Hautes Études Sci. Publ. Math. 1981 53 73

[15] Halmos, Paul R. Measure Theory 1950

[16] Helfgott, H. A. Growth and generation in 𝑆𝐿₂(ℤ/𝕡ℤ) Ann. of Math. (2) 2008 601 623

[17] Hewitt, Edwin, Savage, Leonard J. Symmetric measures on Cartesian products Trans. Amer. Math. Soc. 1955 470 501

[18] Hrushovski, Ehud Pseudo-finite fields and related structures 2002 151 212

[19] Hrushovski, Ehud, Wagner, Frank Counting and dimensions 2008 161 176

[20] Hrushovski, Ehud, Peterzil, Ya’Acov, Pillay, Anand Groups, measures, and the NIP J. Amer. Math. Soc. 2008 563 596

[21] Kallenberg, Olav On the representation theorem for exchangeable arrays J. Multivariate Anal. 1989 137 154

[22] Kaplansky, Irving Lie algebras and locally compact groups 1995

[23] Kim, Byunghan, Pillay, Anand Simple theories Ann. Pure Appl. Logic 1997 149 164

[24] Komlã³S, J., Simonovits, M. Szemerédi’s regularity lemma and its applications in graph theory 1996 295 352

[25] Krauss, Peter H. Representation of symmetric probability models J. Symbolic Logic 1969 183 193

[26] Aspects of inductive logic 1966

[27] Lee, John M. Riemannian manifolds 1997

[28] Marker, David Model theory 2002

[29] Marker, David Semialgebraic expansions of 𝐶 Trans. Amer. Math. Soc. 1990 581 592

[30] Morley, Michael The Löwenheim-Skolem theorem for models with standard part 1971 43 52

[31] Pillay, Anand An introduction to stability theory 1983

[32] Poizat, Bruno Cours de théorie des modèles 1985

[33] Poizat, Bruno An introduction to algebraically closed fields & varieties 1989 41 67

[34] Raghunathan, M. S. Discrete subgroups of Lie groups Math. Student 2007

[35] Shelah, Saharon The lazy model-theoretician’s guide to stability Logique et Anal. (N.S.) 1975 241 308

[36] Shelah, S. Classification theory and the number of nonisomorphic models 1990

[37] Shelah, Saharon Simple unstable theories Ann. Math. Logic 1980 177 203

[38] Tao, Terence Product set estimates for non-commutative groups Combinatorica 2008 547 594

[39] Tao, Terence The sum-product phenomenon in arbitrary rings Contrib. Discrete Math. 2009 59 82

[40] Tao, Terence, Vu, Van Additive combinatorics 2006

[41] Yamabe, Hidehiko A generalization of a theorem of Gleason Ann. of Math. (2) 1953 351 365

[42] Weil, Andrã© Foundations of algebraic geometry 1962

[43] Zimmer, Robert J. Essential results of functional analysis 1990

Cité par Sources :