Convex integration for a class of active scalar equations
Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 1159-1174

Voir la notice de l'article provenant de la source American Mathematical Society

We show that a general class of active scalar equations, including porous media and certain magnetostrophic turbulence models, admits non-unique weak solutions in the class of bounded functions. The proof is based upon the method of convex integration recently implemented for equations of fluid dynamics.
DOI : 10.1090/S0894-0347-2011-00705-4

Shvydkoy, R. 1

1 Department of Mathematics, Statistics and Computer Science, 851 S. Morgan St., M/C 249, University of Illinois, Chicago, Illinois 60607
@article{10_1090_S0894_0347_2011_00705_4,
     author = {Shvydkoy, R.},
     title = {Convex integration for a class of active scalar equations},
     journal = {Journal of the American Mathematical Society},
     pages = {1159--1174},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2011},
     doi = {10.1090/S0894-0347-2011-00705-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00705-4/}
}
TY  - JOUR
AU  - Shvydkoy, R.
TI  - Convex integration for a class of active scalar equations
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 1159
EP  - 1174
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00705-4/
DO  - 10.1090/S0894-0347-2011-00705-4
ID  - 10_1090_S0894_0347_2011_00705_4
ER  - 
%0 Journal Article
%A Shvydkoy, R.
%T Convex integration for a class of active scalar equations
%J Journal of the American Mathematical Society
%D 2011
%P 1159-1174
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00705-4/
%R 10.1090/S0894-0347-2011-00705-4
%F 10_1090_S0894_0347_2011_00705_4
Shvydkoy, R. Convex integration for a class of active scalar equations. Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 1159-1174. doi: 10.1090/S0894-0347-2011-00705-4

[1] Constantin, Peter Scaling exponents for active scalars J. Statist. Phys. 1998 571 595

[2] De Lellis, Camillo, Szã©Kelyhidi, Lã¡Szlã³, Jr. The Euler equations as a differential inclusion Ann. of Math. (2) 2009 1417 1436

[3] De Lellis, Camillo, Szã©Kelyhidi, Lã¡Szlã³, Jr. On admissibility criteria for weak solutions of the Euler equations Arch. Ration. Mech. Anal. 2010 225 260

[4] Eyink, Gregory L., Sreenivasan, Katepalli R. Onsager and the theory of hydrodynamic turbulence Rev. Modern Phys. 2006 87 135

[5] Gromov, Mikhael Partial differential relations 1986

[6] Kirchheim, Bernd, Mã¼Ller, Stefan, Å Verã¡K, Vladimã­R Studying nonlinear pde by geometry in matrix space 2003 347 395

[7] Moffatt, H. Keith Magnetostrophic turbulence and the geodynamo 2008 339 346

[8] Mã¼Ller, S., Å Verã¡K, V. Convex integration for Lipschitz mappings and counterexamples to regularity Ann. of Math. (2) 2003 715 742

[9] Onsager, L. Statistical hydrodynamics Nuovo Cimento (9) 1949 279 287

[10] Scheffer, Vladimir REGULARITY AND IRREGULARITY OF SOLUTIONS TO NONLINEAR SECOND-ORDER ELLIPTIC SYSTEMS OF PARTIAL DIFFERENTIAL-EQUATIONS AND INEQUALITIES 1974 116

[11] Scheffer, Vladimir An inviscid flow with compact support in space-time J. Geom. Anal. 1993 343 401

[12] Shnirelman, A. On the nonuniqueness of weak solution of the Euler equation Comm. Pure Appl. Math. 1997 1261 1286

[13] Shnirelman, A. Weak solutions with decreasing energy of incompressible Euler equations Comm. Math. Phys. 2000 541 603

[14] Shvydkoy, Roman Lectures on the Onsager conjecture Discrete Contin. Dyn. Syst. Ser. S 2010 473 496

[15] Spring, David Convex integration theory 1998

[16] Tartar, L. Compensated compactness and applications to partial differential equations 1979 136 212

Cité par Sources :