Density of positive Lyapunov exponents for 𝑆𝐿(2,ℝ)-cocycles
Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 999-1014

Voir la notice de l'article provenant de la source American Mathematical Society

We show that $\mathrm {SL}(2,\mathbb {R})$-cocycles with a positive Lyapunov exponent are dense in all regularity classes and for all non-periodic dynamical systems. For Schrödinger cocycles, we show prevalence of potentials for which the Lyapunov exponent is positive for a dense set of energies.
DOI : 10.1090/S0894-0347-2011-00702-9

Avila, Artur 1, 2

1 Institut de Mathématiques de Jussieu, CNRS UMR 7586, 175 rue du Chevaleret, 75013, Paris, France
2 IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil
@article{10_1090_S0894_0347_2011_00702_9,
     author = {Avila, Artur},
     title = {Density of positive {Lyapunov} exponents for {\dh}‘†{\dh}{\textquestiondown}(2,\^a„)-cocycles},
     journal = {Journal of the American Mathematical Society},
     pages = {999--1014},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2011},
     doi = {10.1090/S0894-0347-2011-00702-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00702-9/}
}
TY  - JOUR
AU  - Avila, Artur
TI  - Density of positive Lyapunov exponents for 𝑆𝐿(2,ℝ)-cocycles
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 999
EP  - 1014
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00702-9/
DO  - 10.1090/S0894-0347-2011-00702-9
ID  - 10_1090_S0894_0347_2011_00702_9
ER  - 
%0 Journal Article
%A Avila, Artur
%T Density of positive Lyapunov exponents for 𝑆𝐿(2,ℝ)-cocycles
%J Journal of the American Mathematical Society
%D 2011
%P 999-1014
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00702-9/
%R 10.1090/S0894-0347-2011-00702-9
%F 10_1090_S0894_0347_2011_00702_9
Avila, Artur. Density of positive Lyapunov exponents for 𝑆𝐿(2,ℝ)-cocycles. Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 999-1014. doi: 10.1090/S0894-0347-2011-00702-9

[1] Avila, Artur Density of positive Lyapunov exponents for quasiperiodic 𝑆𝐿(2,ℝ)-cocycles in arbitrary dimension J. Mod. Dyn. 2009 631 636

[2] Avila, Artur On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators Comm. Math. Phys. 2009 907 918

[3] Avila, Artur, Bochi, Jairo A formula with some applications to the theory of Lyapunov exponents Israel J. Math. 2002 125 137

[4] Avila, Artur, Damanik, David Generic singular spectrum for ergodic Schrödinger operators Duke Math. J. 2005 393 400

[5] Avron, J., Van Mouche, P. H. M., Simon, B. On the measure of the spectrum for the almost Mathieu operator Comm. Math. Phys. 1990 103 118

[6] Avron, Joseph, Simon, Barry Almost periodic Schrödinger operators. II. The integrated density of states Duke Math. J. 1983 369 391

[7] Benyamini, Yoav, Lindenstrauss, Joram Geometric nonlinear functional analysis. Vol. 1 2000

[8] Bochi, Jairo Genericity of zero Lyapunov exponents Ergodic Theory Dynam. Systems 2002 1667 1696

[9] Bochi, Jairo, Viana, Marcelo Lyapunov exponents: how frequently are dynamical systems hyperbolic? 2004 271 297

[10] Bonatti, Christian, Gã³Mez-Mont, Xavier, Viana, Marcelo Généricité d’exposants de Lyapunov non-nuls pour des produits déterministes de matrices Ann. Inst. H. Poincaré C Anal. Non Linéaire 2003 579 624

[11] Damanik, David Lyapunov exponents and spectral analysis of ergodic Schrödinger operators: a survey of Kotani theory and its applications 2007 539 563

[12] Dinaburg, E. I., Sinaä­, Ja. G. The one-dimensional Schrödinger equation with quasiperiodic potential Funkcional. Anal. i Priložen. 1975 8 21

[13] Fayad, Bassam, Krikorian, Raphaã«L Rigidity results for quasiperiodic 𝑆𝐿(2,ℝ)-cocycles J. Mod. Dyn. 2009 497 510

[14] Hunt, Brian R., Sauer, Tim, Yorke, James A. Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces Bull. Amer. Math. Soc. (N.S.) 1992 217 238

[15] Jitomirskaya, Svetlana Ergodic Schrödinger operators (on one foot) 2007 613 647

[16] Katok, A. Bernoulli diffeomorphisms on surfaces Ann. of Math. (2) 1979 529 547

[17] Kolmogorov, A. N. Théorie générale des systèmes dynamiques et mécanique classique 1957 315 333

[18] Kotani, Shinichi Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators 1984 225 247

[19] Yoccoz, Jean-Christophe Some questions and remarks about 𝑆𝐿(2,𝐑) cocycles 2004 447 458

[20] Viana, Marcelo Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents Ann. of Math. (2) 2008 643 680

Cité par Sources :