Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_2011_00702_9,
     author = {Avila, Artur},
     title = {Density of positive {Lyapunov} exponents for {\dh}{\dh}{\textquestiondown}(2,\^a)-cocycles},
     journal = {Journal of the American Mathematical Society},
     pages = {999--1014},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2011},
     doi = {10.1090/S0894-0347-2011-00702-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00702-9/}
}
                      
                      
                    TY - JOUR AU - Avila, Artur TI - Density of positive Lyapunov exponents for ðð¿(2,â)-cocycles JO - Journal of the American Mathematical Society PY - 2011 SP - 999 EP - 1014 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00702-9/ DO - 10.1090/S0894-0347-2011-00702-9 ID - 10_1090_S0894_0347_2011_00702_9 ER -
%0 Journal Article %A Avila, Artur %T Density of positive Lyapunov exponents for ðð¿(2,â)-cocycles %J Journal of the American Mathematical Society %D 2011 %P 999-1014 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00702-9/ %R 10.1090/S0894-0347-2011-00702-9 %F 10_1090_S0894_0347_2011_00702_9
Avila, Artur. Density of positive Lyapunov exponents for ðð¿(2,â)-cocycles. Journal of the American Mathematical Society, Tome 24 (2011) no. 4, pp. 999-1014. doi: 10.1090/S0894-0347-2011-00702-9
[1] Density of positive Lyapunov exponents for quasiperiodic ðð¿(2,â)-cocycles in arbitrary dimension J. Mod. Dyn. 2009 631 636
[2] On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators Comm. Math. Phys. 2009 907 918
[3] , A formula with some applications to the theory of Lyapunov exponents Israel J. Math. 2002 125 137
[4] , Generic singular spectrum for ergodic Schrödinger operators Duke Math. J. 2005 393 400
[5] , , On the measure of the spectrum for the almost Mathieu operator Comm. Math. Phys. 1990 103 118
[6] , Almost periodic Schrödinger operators. II. The integrated density of states Duke Math. J. 1983 369 391
[7] , Geometric nonlinear functional analysis. Vol. 1 2000
[8] Genericity of zero Lyapunov exponents Ergodic Theory Dynam. Systems 2002 1667 1696
[9] , Lyapunov exponents: how frequently are dynamical systems hyperbolic? 2004 271 297
[10] , , Généricité dâexposants de Lyapunov non-nuls pour des produits déterministes de matrices Ann. Inst. H. Poincaré C Anal. Non Linéaire 2003 579 624
[11] Lyapunov exponents and spectral analysis of ergodic Schrödinger operators: a survey of Kotani theory and its applications 2007 539 563
[12] , The one-dimensional Schrödinger equation with quasiperiodic potential Funkcional. Anal. i Priložen. 1975 8 21
[13] , Rigidity results for quasiperiodic ðð¿(2,â)-cocycles J. Mod. Dyn. 2009 497 510
[14] , , Prevalence: a translation-invariant âalmost everyâ on infinite-dimensional spaces Bull. Amer. Math. Soc. (N.S.) 1992 217 238
[15] Ergodic Schrödinger operators (on one foot) 2007 613 647
[16] Bernoulli diffeomorphisms on surfaces Ann. of Math. (2) 1979 529 547
[17] Théorie générale des systèmes dynamiques et mécanique classique 1957 315 333
[18] Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators 1984 225 247
[19] Some questions and remarks about ðð¿(2,ð) cocycles 2004 447 458
[20] Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents Ann. of Math. (2) 2008 643 680
Cité par Sources :
