Erratum to âInfinite finitely generated fields are biinterpretable with ââ
Journal of the American Mathematical Society, Tome 24 (2011) no. 3, p. 917
Voir la notice de l'article provenant de la source American Mathematical Society
There is a serious error in the valuation recovery argument in the paper Infinite finitely generated fields are biinterpretable with ${\mathbb N}$. Consequently, Popâs Conjecture that elementarily equivalent finitely generated fields are isomorphic remains open.
@article{10_1090_S0894_0347_2011_00696_6,
author = {Scanlon, Thomas},
title = {Erratum to {\^aInfinite} finitely generated fields are biinterpretable with \^a\^a},
journal = {Journal of the American Mathematical Society},
pages = {917--917},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2011},
doi = {10.1090/S0894-0347-2011-00696-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00696-6/}
}
TY - JOUR AU - Scanlon, Thomas TI - Erratum to âInfinite finitely generated fields are biinterpretable with ââ JO - Journal of the American Mathematical Society PY - 2011 SP - 917 EP - 917 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00696-6/ DO - 10.1090/S0894-0347-2011-00696-6 ID - 10_1090_S0894_0347_2011_00696_6 ER -
%0 Journal Article %A Scanlon, Thomas %T Erratum to âInfinite finitely generated fields are biinterpretable with ââ %J Journal of the American Mathematical Society %D 2011 %P 917-917 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00696-6/ %R 10.1090/S0894-0347-2011-00696-6 %F 10_1090_S0894_0347_2011_00696_6
Scanlon, Thomas. Erratum to âInfinite finitely generated fields are biinterpretable with ââ. Journal of the American Mathematical Society, Tome 24 (2011) no. 3, p. 917. doi: 10.1090/S0894-0347-2011-00696-6
[1] Infinite finitely generated fields are biinterpretable with â J. Amer. Math. Soc. 2008 893 908
Cité par Sources :