Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds
Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 603-648

Voir la notice de l'article provenant de la source American Mathematical Society

We show that for a given bounded Apollonian circle packing $\mathcal P$, there exists a constant $c>0$ such that the number of circles of curvature at most $T$ is asymptotic to $c\cdot T^\alpha$ as $T\to \infty$. Here $\alpha \approx 1.30568(8)$ is the residual dimension of the packing. For $\mathcal P$ integral, let $\pi ^{\mathcal {P}}(T)$ denote the number of circles with prime curvature less than $T$. Similarly let $\pi _2^{\mathcal {P}}(T)$ be the number of pairs of tangent circles with prime curvatures less than $T$. We obtain the upper bounds $\pi ^{\mathcal {P}}(T)\ll T^\alpha /\log T$ and $\pi _2^{\mathcal {P}}(T)\ll T^\alpha /(\log T)^2$, which are sharp up to a constant multiple. The main ingredient of our proof is the effective equidistribution of expanding closed horospheres in the unit tangent bundle of a geometrically finite hyperbolic $3$-manifold $\Gamma \backslash \mathbb {H}^3$ under the assumption that the critical exponent of $\Gamma$ exceeds one.
DOI : 10.1090/S0894-0347-2011-00691-7

Kontorovich, Alex 1, 2 ; Oh, Hee 

1 Department of Mathematics, Brown University, Providence, Rhode Island 02912
2 Department of Mathematics, Stony Brook University, Stony Brook, New York 11794-3651
@article{10_1090_S0894_0347_2011_00691_7,
     author = {Kontorovich, Alex and Oh, Hee},
     title = {Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {603--648},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2011},
     doi = {10.1090/S0894-0347-2011-00691-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00691-7/}
}
TY  - JOUR
AU  - Kontorovich, Alex
AU  - Oh, Hee
TI  - Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 603
EP  - 648
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00691-7/
DO  - 10.1090/S0894-0347-2011-00691-7
ID  - 10_1090_S0894_0347_2011_00691_7
ER  - 
%0 Journal Article
%A Kontorovich, Alex
%A Oh, Hee
%T Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds
%J Journal of the American Mathematical Society
%D 2011
%P 603-648
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2011-00691-7/
%R 10.1090/S0894-0347-2011-00691-7
%F 10_1090_S0894_0347_2011_00691_7
Kontorovich, Alex; Oh, Hee. Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds. Journal of the American Mathematical Society, Tome 24 (2011) no. 3, pp. 603-648. doi: 10.1090/S0894-0347-2011-00691-7

[1] Aubin, Thierry Nonlinear analysis on manifolds. Monge-Ampère equations 1982

[2] Beardon, Alan F., Maskit, Bernard Limit points of Kleinian groups and finite sided fundamental polyhedra Acta Math. 1974 1 12

[3] Borevich, A. I., Shafarevich, I. R. Number theory 1966

[4] Bourgain, Jean, Gamburd, Alex, Sarnak, Peter Affine linear sieve, expanders, and sum-product Invent. Math. 2010 559 644

[5] Boyd, David W. The sequence of radii of the Apollonian packing Math. Comp. 1982 249 254

[6] Burger, Marc Horocycle flow on geometrically finite surfaces Duke Math. J. 1990 779 803

[7] Corlette, Kevin, Iozzi, Alessandra Limit sets of discrete groups of isometries of exotic hyperbolic spaces Trans. Amer. Math. Soc. 1999 1507 1530

[8] Coxeter, H. S. M. The problem of Apollonius Amer. Math. Monthly 1968 5 15

[9] Dal’Bo, Franã§Oise Topologie du feuilletage fortement stable Ann. Inst. Fourier (Grenoble) 2000 981 993

[10] Dani, S. G. Invariant measures and minimal sets of horospherical flows Invent. Math. 1981 357 385

[11] Eskin, Alex, Mcmullen, Curt Mixing, counting, and equidistribution in Lie groups Duke Math. J. 1993 181 209

[12] Gangolli, Ramesh, Varadarajan, V. S. Harmonic analysis of spherical functions on real reductive groups 1988

[13] Graham, Ronald L., Lagarias, Jeffrey C., Mallows, Colin L., Wilks, Allan R., Yan, Catherine H. Apollonian circle packings: number theory J. Number Theory 2003 1 45

[14] Graham, Ronald L., Lagarias, Jeffrey C., Mallows, Colin L., Wilks, Allan R., Yan, Catherine H. Apollonian circle packings: geometry and group theory. I. The Apollonian group Discrete Comput. Geom. 2005 547 585

[15] Guivarc’H, Y., Raugi, A. Products of random matrices: convergence theorems 1986 31 54

[16] Hirst, K. E. The Apollonian packing of circles J. London Math. Soc. 1967 281 291

[17] Iwaniec, Henryk, Kowalski, Emmanuel Analytic number theory 2004

[18] Kapovich, Michael Hyperbolic manifolds and discrete groups 2001

[19] Kontorovich, Alex V. The hyperbolic lattice point count in infinite volume with applications to sieves Duke Math. J. 2009 1 36

[20] Lang, Serge Algebra 2002

[21] Lax, Peter D., Phillips, Ralph S. The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces J. Functional Analysis 1982 280 350

[22] Margulis, Grigoriy A. On some aspects of the theory of Anosov systems 2004

[23] Maskit, Bernard Kleinian groups 1988

[24] Matthews, C. R., Vaserstein, L. N., Weisfeiler, B. Congruence properties of Zariski-dense subgroups. I Proc. London Math. Soc. (3) 1984 514 532

[25] Maucourant, Franã§Ois Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices Duke Math. J. 2007 357 399

[26] Mcmullen, Curtis T. Hausdorff dimension and conformal dynamics. III. Computation of dimension Amer. J. Math. 1998 691 721

[27] Patterson, S. J. The limit set of a Fuchsian group Acta Math. 1976 241 273

[28] Platonov, Vladimir, Rapinchuk, Andrei Algebraic groups and number theory 1994

[29] Ratner, Marina On Raghunathan’s measure conjecture Ann. of Math. (2) 1991 545 607

[30] Ratner, Marina Raghunathan’s topological conjecture and distributions of unipotent flows Duke Math. J. 1991 235 280

[31] Roblin, Thomas Ergodicité et équidistribution en courbure négative Mém. Soc. Math. Fr. (N.S.) 2003

[32] Sarnak, Peter Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series Comm. Pure Appl. Math. 1981 719 739

[33] Schapira, Barbara Equidistribution of the horocycles of a geometrically finite surface Int. Math. Res. Not. 2005 2447 2471

[34] Shalom, Yehuda Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group Ann. of Math. (2) 2000 113 182

[35] Sullivan, Dennis The density at infinity of a discrete group of hyperbolic motions Inst. Hautes Études Sci. Publ. Math. 1979 171 202

[36] Sullivan, Dennis Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups Acta Math. 1984 259 277

[37] Wilker, J. B. Sizing up a solid packing Period. Math. Hungar. 1977 117 134

Cité par Sources :