Voir la notice de l'article provenant de la source American Mathematical Society
Raphaël, Pierre 1 ; Szeftel, Jeremie 2
@article{10_1090_S0894_0347_2010_00688_1,
author = {Rapha\~A{\guillemotleft}l, Pierre and Szeftel, Jeremie},
title = {Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical {NLS}},
journal = {Journal of the American Mathematical Society},
pages = {471--546},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2011},
doi = {10.1090/S0894-0347-2010-00688-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00688-1/}
}
TY - JOUR AU - Raphaël, Pierre AU - Szeftel, Jeremie TI - Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS JO - Journal of the American Mathematical Society PY - 2011 SP - 471 EP - 546 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00688-1/ DO - 10.1090/S0894-0347-2010-00688-1 ID - 10_1090_S0894_0347_2010_00688_1 ER -
%0 Journal Article %A Raphaël, Pierre %A Szeftel, Jeremie %T Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS %J Journal of the American Mathematical Society %D 2011 %P 471-546 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00688-1/ %R 10.1090/S0894-0347-2010-00688-1 %F 10_1090_S0894_0347_2010_00688_1
Raphaël, Pierre; Szeftel, Jeremie. Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS. Journal of the American Mathematical Society, Tome 24 (2011) no. 2, pp. 471-546. doi: 10.1090/S0894-0347-2010-00688-1
[1] Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2004 139 170
[2] , , Infinite time aggregation for the critical Patlak-Keller-Segel model in â² Comm. Pure Appl. Math. 2008 1449 1481
[3] , Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1997
[4] , , Two singular dynamics of the nonlinear Schrödinger equation on a plane domain Geom. Funct. Anal. 2003 1 19
[5] , , , Spectra of linearized operators for NLS solitary waves SIAM J. Math. Anal. 2007/08 1070 1111
[6] , Dynamic of threshold solutions for energy-critical NLS Geom. Funct. Anal. 2009 1787 1840
[7] , , Proof of a spectral property related to the singularity formation for the ð¿Â² critical nonlinear Schrödinger equation Phys. D 2006 1 13
[8] , , Symmetry and related properties via the maximum principle Comm. Math. Phys. 1979 209 243
[9] , On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case J. Functional Analysis 1979 1 32
[10] , Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case Invent. Math. 2006 645 675
[11] , , , Characterization of minimal-mass blowup solutions to the focusing mass-critical NLS SIAM J. Math. Anal. 2009 219 236
[12] , , On stability of pseudo-conformal blowup for ð¿Â²-critical Hartree NLS Ann. Henri Poincaré 2009 1159 1205
[13] , , Two-soliton solutions to the three-dimensional gravitational Hartree equation Comm. Pure Appl. Math. 2009 1501 1550
[14] , Non-generic blow-up solutions for the critical focusing NLS in 1-D J. Eur. Math. Soc. (JEMS) 2009 1 125
[15] Uniqueness of positive solutions of Îð¢-ð¢+ð¢^{ð} Arch. Rational Mech. Anal. 1989 243 266
[16] The concentration-compactness principle in the calculus of variations. The locally compact case. I Ann. Inst. H. Poincaré Anal. Non Linéaire 1984 109 145
[17] Asymptotic ð-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations Amer. J. Math. 2005 1103 1140
[18] , Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation Ann. of Math. (2) 2002 235 280
[19] , Nonexistence of blow-up solution with minimal ð¿Â²-mass for the critical gKdV equation Duke Math. J. 2002 385 408
[20] , Multi solitary waves for nonlinear Schrödinger equations Ann. Inst. H. Poincaré C Anal. Non Linéaire 2006 849 864
[21] Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power Duke Math. J. 1993 427 454
[22] Construction of solutions with exactly ð blow-up points for the Schrödinger equation with critical nonlinearity Comm. Math. Phys. 1990 223 240
[23] Nonexistence of minimal blow-up solutions of equations ðð¢_{ð¡} Ann. Inst. H. Poincaré Phys. Théor. 1996 33 85
[24] , The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation Ann. of Math. (2) 2005 157 222
[25] , Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation Geom. Funct. Anal. 2003 591 642
[26] , On universality of blow-up profile for ð¿Â² critical nonlinear Schrödinger equation Invent. Math. 2004 565 672
[27] , On a sharp lower bound on the blow-up rate for the ð¿Â² critical nonlinear Schrödinger equation J. Amer. Math. Soc. 2006 37 90
[28] , Existence and stability of the log-log blow-up dynamics for the ð¿Â²-critical nonlinear Schrödinger equation in a domain Ann. Henri Poincaré 2007 1177 1219
[29] Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation Math. Ann. 2005 577 609
[30] Nonlinear Schrödinger equations and sharp interpolation estimates Comm. Math. Phys. 1982/83 567 576
[31] Lyapunov stability of ground states of nonlinear dispersive evolution equations Comm. Pure Appl. Math. 1986 51 67
Cité par Sources :