Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_2010_00686_8,
author = {Knop, Friedrich},
title = {Automorphisms of multiplicity free {Hamiltonian} manifolds},
journal = {Journal of the American Mathematical Society},
pages = {567--601},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2011},
doi = {10.1090/S0894-0347-2010-00686-8},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00686-8/}
}
TY - JOUR AU - Knop, Friedrich TI - Automorphisms of multiplicity free Hamiltonian manifolds JO - Journal of the American Mathematical Society PY - 2011 SP - 567 EP - 601 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00686-8/ DO - 10.1090/S0894-0347-2010-00686-8 ID - 10_1090_S0894_0347_2010_00686_8 ER -
%0 Journal Article %A Knop, Friedrich %T Automorphisms of multiplicity free Hamiltonian manifolds %J Journal of the American Mathematical Society %D 2011 %P 567-601 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00686-8/ %R 10.1090/S0894-0347-2010-00686-8 %F 10_1090_S0894_0347_2010_00686_8
Knop, Friedrich. Automorphisms of multiplicity free Hamiltonian manifolds. Journal of the American Mathematical Society, Tome 24 (2011) no. 2, pp. 567-601. doi: 10.1090/S0894-0347-2010-00686-8
[1] , Introduction to commutative algebra 1969
[2] , Composite differentiable functions Ann. of Math. (2) 1982 541 558
[3] Sur lâimage de lâapplication moment 1987 177 192
[4] , Groupes réductifs sur un corps local. II. Schémas en groupes. Existence dâune donnée radicielle valuée Inst. Hautes Ãtudes Sci. Publ. Math. 1984 197 376
[5] Hamiltoniens périodiques et images convexes de lâapplication moment Bull. Soc. Math. France 1988 315 339
[6] Classification des actions hamiltoniennes complètement intégrables de rang deux Ann. Global Anal. Geom. 1990 87 112
[7] , Convexity properties of Hamiltonian group actions 2005
[8] , Multiplicity-free spaces J. Differential Geom. 1984 31 56
[9] Les ðð(3)-variétés symplectiques et leur classification en dimension 4 Bull. Soc. Math. France 1991 371 396
[10] Infinite-dimensional Lie algebras 1990
[11] , The centralizer of invariant functions and division properties of the moment map Illinois J. Math. 1997 462 487
[12] Convexity properties of the moment mapping. III Invent. Math. 1984 547 552
[13] Cohomology of quotients in symplectic and algebraic geometry 1984
[14] Weylgruppe und Momentabbildung Invent. Math. 1990 1 23
[15] The asymptotic behavior of invariant collective motion Invent. Math. 1994 309 328
[16] Automorphisms, root systems, and compactifications of homogeneous varieties J. Amer. Math. Soc. 1996 153 174
[17] Convexity of Hamiltonian manifolds J. Lie Theory 2002 571 582
[18] , Classification of smooth affine spherical varieties Transform. Groups 2006 495 516
[19] Symplectic cuts Math. Res. Lett. 1995 247 258
[20] , , , Nonabelian convexity by symplectic cuts Topology 1998 245 259
[21] Proof of the Knop conjecture Ann. Inst. Fourier (Grenoble) 2009 1105 1134
[22] Variétés sphériques de type ð´ Publ. Math. Inst. Hautes Ãtudes Sci. 2001 161 226
[23] Equivariant completions and tensor products 1989 133 136
[24] Ideals of differentiable functions 1967
[25] Commutative ring theory 1986
[26] , A generalized Liouville method for the integration of Hamiltonian systems Funkcional. Anal. i Priložen. 1978
[27] Smooth functions invariant under the action of a compact Lie group Topology 1975 63 68
[28] Convexity properties of the moment mapping re-examined Adv. Math. 1998 46 91
[29] The classification of transversal multiplicity-free group actions Ann. Global Anal. Geom. 1996 3 42
[30] Spherical varieties and existence of invariant Kähler structures Duke Math. J. 1998 345 377
Cité par Sources :