Automorphisms of multiplicity free Hamiltonian manifolds
Journal of the American Mathematical Society, Tome 24 (2011) no. 2, pp. 567-601

Voir la notice de l'article provenant de la source American Mathematical Society

Let $M$ be a multiplicity free Hamiltonian manifold $M$ for a connected compact Lie group $K$ (not necessarily abelian). Let $\mathcal {P}$ be the momentum polytope of $M$. We calculate the automorphism of $M$ as a sheaf over $\mathcal {P}$ and show that all higher cohomology groups of this sheaf vanish. From this, and a recent theorem of Losev, we deduce a conjecture of Delzant: the momentum polytope and the principal isotropy group determine $M$ up to isomorphism. Moreover, we give a criterion for when a polytope and a group are afforded by a multiplicity free manifold.
DOI : 10.1090/S0894-0347-2010-00686-8

Knop, Friedrich 1

1 Department of Mathematics, Universität Erlangen, Bismarckstrasse $1\frac{1}2$, D-91054 Erlangen, Germany
@article{10_1090_S0894_0347_2010_00686_8,
     author = {Knop, Friedrich},
     title = {Automorphisms of multiplicity free {Hamiltonian} manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {567--601},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2011},
     doi = {10.1090/S0894-0347-2010-00686-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00686-8/}
}
TY  - JOUR
AU  - Knop, Friedrich
TI  - Automorphisms of multiplicity free Hamiltonian manifolds
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 567
EP  - 601
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00686-8/
DO  - 10.1090/S0894-0347-2010-00686-8
ID  - 10_1090_S0894_0347_2010_00686_8
ER  - 
%0 Journal Article
%A Knop, Friedrich
%T Automorphisms of multiplicity free Hamiltonian manifolds
%J Journal of the American Mathematical Society
%D 2011
%P 567-601
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00686-8/
%R 10.1090/S0894-0347-2010-00686-8
%F 10_1090_S0894_0347_2010_00686_8
Knop, Friedrich. Automorphisms of multiplicity free Hamiltonian manifolds. Journal of the American Mathematical Society, Tome 24 (2011) no. 2, pp. 567-601. doi: 10.1090/S0894-0347-2010-00686-8

[1] Atiyah, M. F., Macdonald, I. G. Introduction to commutative algebra 1969

[2] Bierstone, Edward, Milman, Pierre D. Composite differentiable functions Ann. of Math. (2) 1982 541 558

[3] Brion, Michel Sur l’image de l’application moment 1987 177 192

[4] Bruhat, F., Tits, J. Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée Inst. Hautes Études Sci. Publ. Math. 1984 197 376

[5] Delzant, Thomas Hamiltoniens périodiques et images convexes de l’application moment Bull. Soc. Math. France 1988 315 339

[6] Delzant, Thomas Classification des actions hamiltoniennes complètement intégrables de rang deux Ann. Global Anal. Geom. 1990 87 112

[7] Guillemin, Victor, Sjamaar, Reyer Convexity properties of Hamiltonian group actions 2005

[8] Guillemin, Victor, Sternberg, Shlomo Multiplicity-free spaces J. Differential Geom. 1984 31 56

[9] Iglã©Sias, Patrick Les 𝑆𝑂(3)-variétés symplectiques et leur classification en dimension 4 Bull. Soc. Math. France 1991 371 396

[10] Kac, Victor G. Infinite-dimensional Lie algebras 1990

[11] Karshon, Yael, Lerman, Eugene The centralizer of invariant functions and division properties of the moment map Illinois J. Math. 1997 462 487

[12] Kirwan, Frances Convexity properties of the moment mapping. III Invent. Math. 1984 547 552

[13] Kirwan, Frances Clare Cohomology of quotients in symplectic and algebraic geometry 1984

[14] Knop, Friedrich Weylgruppe und Momentabbildung Invent. Math. 1990 1 23

[15] Knop, Friedrich The asymptotic behavior of invariant collective motion Invent. Math. 1994 309 328

[16] Knop, Friedrich Automorphisms, root systems, and compactifications of homogeneous varieties J. Amer. Math. Soc. 1996 153 174

[17] Knop, Friedrich Convexity of Hamiltonian manifolds J. Lie Theory 2002 571 582

[18] Knop, Friedrich, Van Steirteghem, Bart Classification of smooth affine spherical varieties Transform. Groups 2006 495 516

[19] Lerman, Eugene Symplectic cuts Math. Res. Lett. 1995 247 258

[20] Lerman, Eugene, Meinrenken, Eckhard, Tolman, Sue, Woodward, Chris Nonabelian convexity by symplectic cuts Topology 1998 245 259

[21] Losev, Ivan V. Proof of the Knop conjecture Ann. Inst. Fourier (Grenoble) 2009 1105 1134

[22] Luna, D. Variétés sphériques de type 𝐴 Publ. Math. Inst. Hautes Études Sci. 2001 161 226

[23] Magid, Andy R. Equivariant completions and tensor products 1989 133 136

[24] Malgrange, B. Ideals of differentiable functions 1967

[25] Matsumura, Hideyuki Commutative ring theory 1986

[26] Miå¡ÄEnko, A. S., Fomenko, A. T. A generalized Liouville method for the integration of Hamiltonian systems Funkcional. Anal. i Priložen. 1978

[27] Schwarz, Gerald W. Smooth functions invariant under the action of a compact Lie group Topology 1975 63 68

[28] Sjamaar, Reyer Convexity properties of the moment mapping re-examined Adv. Math. 1998 46 91

[29] Woodward, Chris The classification of transversal multiplicity-free group actions Ann. Global Anal. Geom. 1996 3 42

[30] Woodward, Chris T. Spherical varieties and existence of invariant Kähler structures Duke Math. J. 1998 345 377

Cité par Sources :