Voir la notice de l'article provenant de la source American Mathematical Society
Kozma, Gady 1 ; Nachmias, Asaf 2
@article{10_1090_S0894_0347_2010_00684_4,
author = {Kozma, Gady and Nachmias, Asaf},
title = {Arm exponents in high dimensional percolation},
journal = {Journal of the American Mathematical Society},
pages = {375--409},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2011},
doi = {10.1090/S0894-0347-2010-00684-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00684-4/}
}
TY - JOUR AU - Kozma, Gady AU - Nachmias, Asaf TI - Arm exponents in high dimensional percolation JO - Journal of the American Mathematical Society PY - 2011 SP - 375 EP - 409 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00684-4/ DO - 10.1090/S0894-0347-2010-00684-4 ID - 10_1090_S0894_0347_2010_00684_4 ER -
%0 Journal Article %A Kozma, Gady %A Nachmias, Asaf %T Arm exponents in high dimensional percolation %J Journal of the American Mathematical Society %D 2011 %P 375-409 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00684-4/ %R 10.1090/S0894-0347-2010-00684-4 %F 10_1090_S0894_0347_2010_00684_4
Kozma, Gady; Nachmias, Asaf. Arm exponents in high dimensional percolation. Journal of the American Mathematical Society, Tome 24 (2011) no. 2, pp. 375-409. doi: 10.1090/S0894-0347-2010-00684-4
[1] On the number of incipient spanning clusters Nuclear Phys. B 1997 551 582
[2] , Sharpness of the phase transition in percolation models Comm. Math. Phys. 1987 489 526
[3] , Tree graph inequalities and critical behavior in percolation models J. Statist. Phys. 1984 107 143
[4] , Branching processes 1972
[5] , Percolation critical exponents under the triangle condition Ann. Probab. 1991 1520 1536
[6] , On a combinatorial conjecture concerning disjoint occurrences of events Ann. Probab. 1987 354 374
[7] , Inequalities with applications to percolation and reliability J. Appl. Probab. 1985 556 569
[8] , Percolation 2006
[9] , , The van den Berg-Kesten-Reimer inequality: a review 1999 159 173
[10] , Self-avoiding walk in 5 or more dimensions Comm. Math. Phys. 1985 125 148
[11] , Density and uniqueness in percolation Comm. Math. Phys. 1989 501 505
[12] , On the upper critical dimension of Bernoulli percolation Comm. Math. Phys. 1987 27 48
[13] Probability: theory and examples 1996
[14] , On the evolution of random graphs Magyar Tud. Akad. Mat. Kutató Int. Közl. 1960 17 61
[15] Percolation 1999
[16] Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals Ann. Probab. 2008 530 593
[17] , , Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models Ann. Probab. 2003 349 408
[18] , Mean-field critical behaviour for percolation in high dimensions Comm. Math. Phys. 1990 333 391
[19] , The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents J. Statist. Phys. 2000 1075 1168
[20] A lower bound for the critical probability in a certain percolation process Proc. Cambridge Philos. Soc. 1960 13 20
[21] , , Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk J. Stat. Phys. 2008 1001 1049
[22] , , Construction of the incipient infinite cluster for spread-out oriented percolation above 4+1 dimensions Comm. Math. Phys. 2002 435 461
[23] , , The survival probability for critical spread-out oriented percolation above 4+1 dimensions. I. Induction Probab. Theory Related Fields 2007 363 389
[24] , , The survival probability for critical spread-out oriented percolation above 4+1 dimensions. II. Expansion Ann. Inst. H. Poincaré Probab. Statist. 2007 509 570
[25] The critical probability of bond percolation on the square lattice equals 1\over2 Comm. Math. Phys. 1980 41 59
[26] Percolation theory for mathematicians 1982
[27] , The Alexander-Orbach conjecture holds in high dimensions Invent. Math. 2009 635 654
[28] Critical percolation of free product of groups Internat. J. Algebra Comput. 2008 683 704
[29] , , One-arm exponent for critical 2D percolation Electron. J. Probab. 2002
[30] Coincidence of critical points in percolation problems Dokl. Akad. Nauk SSSR 1986 1308 1311
[31] Gap exponents for percolation processes with triangle condition J. Statist. Phys. 1987 235 243
[32] Proof of the van den Berg-Kesten conjecture Combin. Probab. Comput. 2000 27 32
[33] Mean-field behavior for the survival probability and the percolation point-to-surface connectivity J. Statist. Phys. 2004 111 130
[34] Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs Comm. Math. Phys. 2001 271 322
[35] The lace expansion and its applications 2006
[36] , Critical exponents for two-dimensional percolation Math. Res. Lett. 2001 729 744
Cité par Sources :