Hecke fields of analytic families of modular forms
Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 51-80

Voir la notice de l'article provenant de la source American Mathematical Society

We make finiteness conjectures on the composite of Hecke fields of classical members of a $p$-adic analytic family of slope 0 elliptic modular forms in the vertical case (with fixed level varying weight). In the horizontal case (fixed weight varying $p$-power level), we prove the corresponding statements.
DOI : 10.1090/S0894-0347-2010-00680-7

Hida, Haruzo 1

1 Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-1555
@article{10_1090_S0894_0347_2010_00680_7,
     author = {Hida, Haruzo},
     title = {Hecke fields of analytic families of modular forms},
     journal = {Journal of the American Mathematical Society},
     pages = {51--80},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2011},
     doi = {10.1090/S0894-0347-2010-00680-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00680-7/}
}
TY  - JOUR
AU  - Hida, Haruzo
TI  - Hecke fields of analytic families of modular forms
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 51
EP  - 80
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00680-7/
DO  - 10.1090/S0894-0347-2010-00680-7
ID  - 10_1090_S0894_0347_2010_00680_7
ER  - 
%0 Journal Article
%A Hida, Haruzo
%T Hecke fields of analytic families of modular forms
%J Journal of the American Mathematical Society
%D 2011
%P 51-80
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00680-7/
%R 10.1090/S0894-0347-2010-00680-7
%F 10_1090_S0894_0347_2010_00680_7
Hida, Haruzo. Hecke fields of analytic families of modular forms. Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 51-80. doi: 10.1090/S0894-0347-2010-00680-7

[1] Mumford, David Abelian varieties 2008

[2] Shimura, Goro Abelian varieties with complex multiplication and modular functions 1998

[3] Katz, Nicholas M., Mazur, Barry Arithmetic moduli of elliptic curves 1985

[4] Bourbaki, N. Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fascicule XI. Livre II: Algèbre. Chapitre 4: Polynomes et fractions rationnelles. Chapitre 5: Corps commutatifs 1959

[5] Carayol, Henri Sur les représentations 𝑙-adiques associées aux formes modulaires de Hilbert Ann. Sci. École Norm. Sup. (4) 1986 409 468

[6] Chai, Ching-Li Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli Invent. Math. 1995 439 479

[7] Chai, Ching-Li A rigidity result for 𝑝-divisible formal groups Asian J. Math. 2008 193 202

[8] Deligne, P., Rapoport, M. Les schémas de modules de courbes elliptiques 1973 143 316

[9] Ghate, Eknath, Vatsal, Vinayak On the local behaviour of ordinary Λ-adic representations Ann. Inst. Fourier (Grenoble) 2004

[10] Hida, Haruzo Geometric modular forms and elliptic curves 2000

[11] Hida, Haruzo Iwasawa modules attached to congruences of cusp forms Ann. Sci. École Norm. Sup. (4) 1986 231 273

[12] Hida, Haruzo Galois representations into 𝐺𝐿₂(𝑍_{𝑝}[[𝑋]]) attached to ordinary cusp forms Invent. Math. 1986 545 613

[13] Hida, Haruzo Hecke algebras for 𝐺𝐿₁ and 𝐺𝐿₂ 1986 131 163

[14] Hida, Haruzo On 𝑝-adic Hecke algebras for 𝐺𝐿₂ over totally real fields Ann. of Math. (2) 1988 295 384

[15] Hida, Haruzo Adjoint Selmer groups as Iwasawa modules Israel J. Math. 2000 361 427

[16] Hida, Haruzo, Maeda, Yoshitaka Non-abelian base change for totally real fields Pacific J. Math. 1997 189 217

[17] Hida, Haruzo Hilbert modular forms and Iwasawa theory 2006

[18] Honda, Taira Isogeny classes of abelian varieties over finite fields J. Math. Soc. Japan 1968 83 95

[19] Shimura, Goro Introduction to the arithmetic theory of automorphic functions 1971

[20] Washington, Lawrence C. Introduction to cyclotomic fields 1997

[21] Katz, N. Serre-Tate local moduli 1981 138 202

[22] Langlands, R. P. Modular forms and ℓ-adic representations 1973 361 500

[23] Loxton, J. H. On two problems of R. W. Robinson about sums of roots of unity Acta Arith. 1974/75 159 174

[24] Mazur, B. Deforming Galois representations 1989 385 437

[25] Hida, Haruzo Modular forms and Galois cohomology 2000

[26] Miyake, Toshitsune Modular forms 1989

[27] Mazur, B., Wiles, A. On 𝑝-adic analytic families of Galois representations Compositio Math. 1986 231 264

[28] Bosch, S., Gã¼Ntzer, U., Remmert, R. Non-Archimedean analysis 1984

[29] Ribet, Kenneth A. On 𝑙-adic representations attached to modular forms. II Glasgow Math. J. 1985 185 194

[30] Scholl, A. J. Motives for modular forms Invent. Math. 1990 419 430

Cité par Sources :