Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_2010_00680_7,
author = {Hida, Haruzo},
title = {Hecke fields of analytic families of modular forms},
journal = {Journal of the American Mathematical Society},
pages = {51--80},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2011},
doi = {10.1090/S0894-0347-2010-00680-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00680-7/}
}
TY - JOUR AU - Hida, Haruzo TI - Hecke fields of analytic families of modular forms JO - Journal of the American Mathematical Society PY - 2011 SP - 51 EP - 80 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00680-7/ DO - 10.1090/S0894-0347-2010-00680-7 ID - 10_1090_S0894_0347_2010_00680_7 ER -
%0 Journal Article %A Hida, Haruzo %T Hecke fields of analytic families of modular forms %J Journal of the American Mathematical Society %D 2011 %P 51-80 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00680-7/ %R 10.1090/S0894-0347-2010-00680-7 %F 10_1090_S0894_0347_2010_00680_7
Hida, Haruzo. Hecke fields of analytic families of modular forms. Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 51-80. doi: 10.1090/S0894-0347-2010-00680-7
[1] Abelian varieties 2008
[2] Abelian varieties with complex multiplication and modular functions 1998
[3] , Arithmetic moduli of elliptic curves 1985
[4] Ãléments de mathématique. I: Les structures fondamentales de lâanalyse. Fascicule XI. Livre II: Algèbre. Chapitre 4: Polynomes et fractions rationnelles. Chapitre 5: Corps commutatifs 1959
[5] Sur les représentations ð-adiques associées aux formes modulaires de Hilbert Ann. Sci. Ãcole Norm. Sup. (4) 1986 409 468
[6] Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli Invent. Math. 1995 439 479
[7] A rigidity result for ð-divisible formal groups Asian J. Math. 2008 193 202
[8] , Les schémas de modules de courbes elliptiques 1973 143 316
[9] , On the local behaviour of ordinary Î-adic representations Ann. Inst. Fourier (Grenoble) 2004
[10] Geometric modular forms and elliptic curves 2000
[11] Iwasawa modules attached to congruences of cusp forms Ann. Sci. Ãcole Norm. Sup. (4) 1986 231 273
[12] Galois representations into ðºð¿â(ð_{ð}[[ð]]) attached to ordinary cusp forms Invent. Math. 1986 545 613
[13] Hecke algebras for ðºð¿â and ðºð¿â 1986 131 163
[14] On ð-adic Hecke algebras for ðºð¿â over totally real fields Ann. of Math. (2) 1988 295 384
[15] Adjoint Selmer groups as Iwasawa modules Israel J. Math. 2000 361 427
[16] , Non-abelian base change for totally real fields Pacific J. Math. 1997 189 217
[17] Hilbert modular forms and Iwasawa theory 2006
[18] Isogeny classes of abelian varieties over finite fields J. Math. Soc. Japan 1968 83 95
[19] Introduction to the arithmetic theory of automorphic functions 1971
[20] Introduction to cyclotomic fields 1997
[21] Serre-Tate local moduli 1981 138 202
[22] Modular forms and â-adic representations 1973 361 500
[23] On two problems of R. W. Robinson about sums of roots of unity Acta Arith. 1974/75 159 174
[24] Deforming Galois representations 1989 385 437
[25] Modular forms and Galois cohomology 2000
[26] Modular forms 1989
[27] , On ð-adic analytic families of Galois representations Compositio Math. 1986 231 264
[28] , , Non-Archimedean analysis 1984
[29] On ð-adic representations attached to modular forms. II Glasgow Math. J. 1985 185 194
[30] Motives for modular forms Invent. Math. 1990 419 430
Cité par Sources :