Sheaves on affine Schubert varieties, modular representations, and Lusztig’s conjecture
Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 133-181

Voir la notice de l'article provenant de la source American Mathematical Society

We relate a certain category of sheaves of $k$-vector spaces on a complex affine Schubert variety to modules over the $k$-Lie algebra (for $\operatorname {char} k>0$) or to modules over the small quantum group (for $\operatorname {char} k=0$) associated to the Langlands dual root datum. As an application we give a new proof of Lusztig’s conjecture on quantum characters and on modular characters for almost all characteristics. Moreover, we relate the geometric and representation-theoretic sides to sheaves on the underlying moment graph, which allows us to extend the known instances of Lusztig’s modular conjecture in two directions: We give an upper bound on the exceptional characteristics and verify its multiplicity-one case for all relevant primes.
DOI : 10.1090/S0894-0347-2010-00679-0

Fiebig, Peter 1

1 Department Mathematik, Universität Erlangen-Nürnberg, Bismarckstr. $1\frac{1}2$, 91054 Erlangen, Germany
@article{10_1090_S0894_0347_2010_00679_0,
     author = {Fiebig, Peter},
     title = {Sheaves on affine {Schubert} varieties, modular representations, and {Lusztig\^a€™s} conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {133--181},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2011},
     doi = {10.1090/S0894-0347-2010-00679-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00679-0/}
}
TY  - JOUR
AU  - Fiebig, Peter
TI  - Sheaves on affine Schubert varieties, modular representations, and Lusztig’s conjecture
JO  - Journal of the American Mathematical Society
PY  - 2011
SP  - 133
EP  - 181
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00679-0/
DO  - 10.1090/S0894-0347-2010-00679-0
ID  - 10_1090_S0894_0347_2010_00679_0
ER  - 
%0 Journal Article
%A Fiebig, Peter
%T Sheaves on affine Schubert varieties, modular representations, and Lusztig’s conjecture
%J Journal of the American Mathematical Society
%D 2011
%P 133-181
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00679-0/
%R 10.1090/S0894-0347-2010-00679-0
%F 10_1090_S0894_0347_2010_00679_0
Fiebig, Peter. Sheaves on affine Schubert varieties, modular representations, and Lusztig’s conjecture. Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 133-181. doi: 10.1090/S0894-0347-2010-00679-0

[1] Arkhipov, Sergey, Bezrukavnikov, Roman, Ginzburg, Victor Quantum groups, the loop Grassmannian, and the Springer resolution J. Amer. Math. Soc. 2004 595 678

[2] Andersen, H. H., Jantzen, J. C., Soergel, W. Representations of quantum groups at a 𝑝th root of unity and of semisimple groups in characteristic 𝑝: independence of 𝑝 Astérisque 1994 321

[3] Andersen, Henning Haahr The irreducible characters for semi-simple algebraic groups and for quantum groups 1995 732 743

[4] Beä­Linson, A. A., Bernstein, J., Deligne, P. Faisceaux pervers 1982 5 171

[5] Beilinson, Alexander, Ginzburg, Victor, Soergel, Wolfgang Koszul duality patterns in representation theory J. Amer. Math. Soc. 1996 473 527

[6] Bezrukavnikov, Roman, Mirkoviä‡, Ivan, Rumynin, Dmitriy Localization of modules for a semisimple Lie algebra in prime characteristic Ann. of Math. (2) 2008 945 991

[7] Braden, Tom, Macpherson, Robert From moment graphs to intersection cohomology Math. Ann. 2001 533 551

[8] Fiebig, Peter Sheaves on moment graphs and a localization of Verma flags Adv. Math. 2008 683 712

[9] Fiebig, Peter The combinatorics of Coxeter categories Trans. Amer. Math. Soc. 2008 4211 4233

[10] Frenkel, Edward, Gaitsgory, Dennis Local geometric Langlands correspondence and affine Kac-Moody algebras 2006 69 260

[11] Goresky, Mark, Kottwitz, Robert, Macpherson, Robert Equivariant cohomology, Koszul duality, and the localization theorem Invent. Math. 1998 25 83

[12] Humphreys, J. E. Modular representations of classical Lie algebras and semisimple groups J. Algebra 1971 51 79

[13] Humphreys, James E. Reflection groups and Coxeter groups 1990

[14] Jantzen, Jens Carsten Representations of algebraic groups 2003

[15] Kato, Shin-Ichi On the Kazhdan-Lusztig polynomials for affine Weyl groups Adv. in Math. 1985 103 130

[16] Kazhdan, David, Lusztig, George Representations of Coxeter groups and Hecke algebras Invent. Math. 1979 165 184

[17] Kazhdan, David, Lusztig, George Schubert varieties and Poincaré duality 1980 185 203

[18] Kazhdan, D., Lusztig, G. Tensor structures arising from affine Lie algebras. I, II J. Amer. Math. Soc. 1993

[19] Kashiwara, Masaki, Tanisaki, Toshiyuki Kazhdan-Lusztig conjecture for affine Lie algebras with negative level Duke Math. J. 1995 21 62

[20] Kumar, Shrawan Kac-Moody groups, their flag varieties and representation theory 2002

[21] Lusztig, George Hecke algebras and Jantzen’s generic decomposition patterns Adv. in Math. 1980 121 164

[22] Lusztig, George Some problems in the representation theory of finite Chevalley groups 1980 313 317

[23] Lusztig, George Quantum groups at roots of 1 Geom. Dedicata 1990 89 113

[24] Soergel, Wolfgang Kategorie 𝒪, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe J. Amer. Math. Soc. 1990 421 445

[25] Soergel, Wolfgang Roots of unity and positive characteristic 1995 315 338

[26] Soergel, Wolfgang Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln Represent. Theory 1997 37 68

[27] Soergel, Wolfgang On the relation between intersection cohomology and representation theory in positive characteristic J. Pure Appl. Algebra 2000 311 335

Cité par Sources :