Voir la notice de l'article provenant de la source American Mathematical Society
Babson, Eric 1 ; Hoffman, Christopher 2 ; Kahle, Matthew 3
@article{10_1090_S0894_0347_2010_00677_7,
author = {Babson, Eric and Hoffman, Christopher and Kahle, Matthew},
title = {The fundamental group of random 2-complexes},
journal = {Journal of the American Mathematical Society},
pages = {1--28},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2011},
doi = {10.1090/S0894-0347-2010-00677-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00677-7/}
}
TY - JOUR AU - Babson, Eric AU - Hoffman, Christopher AU - Kahle, Matthew TI - The fundamental group of random 2-complexes JO - Journal of the American Mathematical Society PY - 2011 SP - 1 EP - 28 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00677-7/ DO - 10.1090/S0894-0347-2010-00677-7 ID - 10_1090_S0894_0347_2010_00677_7 ER -
%0 Journal Article %A Babson, Eric %A Hoffman, Christopher %A Kahle, Matthew %T The fundamental group of random 2-complexes %J Journal of the American Mathematical Society %D 2011 %P 1-28 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-2010-00677-7/ %R 10.1090/S0894-0347-2010-00677-7 %F 10_1090_S0894_0347_2010_00677_7
Babson, Eric; Hoffman, Christopher; Kahle, Matthew. The fundamental group of random 2-complexes. Journal of the American Mathematical Society, Tome 24 (2011) no. 1, pp. 1-28. doi: 10.1090/S0894-0347-2010-00677-7
[1] Random graphs 2001
[2] A short proof that a subquadratic isoperimetric inequality implies a linear one Michigan Math. J. 1995 103 107
[3] , On random graphs. I Publ. Math. Debrecen 1959 290 297
[4] , Every monotone graph property has a sharp threshold Proc. Amer. Math. Soc. 1996 2993 3002
[5] Hyperbolic groups 1987 75 263
[6] Asymptotic invariants of infinite groups 1993 1 295
[7] Algebraic topology 2002
[8] The neighborhood complex of a random graph J. Combin. Theory Ser. A 2007 380 387
[9] Topology of random clique complexes Discrete Math. 2009 1658 1671
[10] , Homological connectivity of random 2-complexes Combinatorica 2006 475 487
[11] , Homological connectivity of random ð-dimensional complexes Random Structures Algorithms 2009 408 417
[12] A January 2005 invitation to random groups 2005
[13] An algorithm detecting hyperbolicity 1996 193 200
[14] , Topological characteristics of random triangulated surfaces Random Structures Algorithms 2006 247 288
[15] Property (T) and Kazhdan constants for discrete groups Geom. Funct. Anal. 2003 643 670
Cité par Sources :