When does almost free imply free? (For groups, transversals, etc.)
Journal of the American Mathematical Society, Tome 07 (1994) no. 4, pp. 769-830

Voir la notice de l'article provenant de la source American Mathematical Society

We show that the construction of an almost free nonfree Abelian group can be pushed from a regular cardinal $\kappa$ to ${\aleph _{\kappa + 1}}$. Hence there are unboundedly many almost free nonfree Abelian groups below the first cardinal fixed point. We give a sufficient condition for “ $\kappa$ free implies free”, and then we show, assuming the consistency of infinitely many supercompacts, that one can have a model of ZFC+G.C.H. in which ${\aleph _{{\omega ^2} + 1}}$ free implies ${\aleph _{{\omega ^2} + 2}}$ free. Similar construction yields a model in which ${\aleph _\kappa }$ free implies free for $\kappa$ the first cardinal fixed point (namely, the first cardinal $\alpha$ satisfying $\alpha = {\aleph _\alpha }$). The absolute results about the existence of almost free nonfree groups require only minimal knowledge of set theory. Also, no knowledge of metamathematics is required for reading the section on the combinatorial principle used to show that almost free implies free. The consistency of the combinatorial principle requires acquaintance with forcing techniques.
@article{10_1090_S0894_0347_1994_1249391_8,
     author = {Magidor, Menachem and Shelah, Saharon},
     title = {When does almost free imply free? {(For} groups, transversals, etc.)},
     journal = {Journal of the American Mathematical Society},
     pages = {769--830},
     publisher = {mathdoc},
     volume = {07},
     number = {4},
     year = {1994},
     doi = {10.1090/S0894-0347-1994-1249391-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1249391-8/}
}
TY  - JOUR
AU  - Magidor, Menachem
AU  - Shelah, Saharon
TI  - When does almost free imply free? (For groups, transversals, etc.)
JO  - Journal of the American Mathematical Society
PY  - 1994
SP  - 769
EP  - 830
VL  - 07
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1249391-8/
DO  - 10.1090/S0894-0347-1994-1249391-8
ID  - 10_1090_S0894_0347_1994_1249391_8
ER  - 
%0 Journal Article
%A Magidor, Menachem
%A Shelah, Saharon
%T When does almost free imply free? (For groups, transversals, etc.)
%J Journal of the American Mathematical Society
%D 1994
%P 769-830
%V 07
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1994-1249391-8/
%R 10.1090/S0894-0347-1994-1249391-8
%F 10_1090_S0894_0347_1994_1249391_8
Magidor, Menachem; Shelah, Saharon. When does almost free imply free? (For groups, transversals, etc.). Journal of the American Mathematical Society, Tome 07 (1994) no. 4, pp. 769-830. doi: 10.1090/S0894-0347-1994-1249391-8

[1] Baumgartner, James E. A new class of order types Ann. Math. Logic 1976 187 222

[2] Surveys in set theory 1983

[3] Ben-David, Shai On Shelah’s compactness of cardinals Israel J. Math. 1978 34 56

[4] Burke, Maxim R., Magidor, Menachem Shelah’s 𝑝𝑐𝑓 theory and its applications Ann. Pure Appl. Logic 1990 207 254

[5] Eklof, Paul C. On the existence of 𝜅-free abelian groups Proc. Amer. Math. Soc. 1975 65 72

[6] Eklof, Paul C., Mekler, Alan H. Almost free modules 1990

[7] Erdã¶S, P., Rado, R. A partition calculus in set theory Bull. Amer. Math. Soc. 1956 427 489

[8] Foreman, Matthew, Woodin, W. Hugh The generalized continuum hypothesis can fail everywhere Ann. of Math. (2) 1991 1 35

[9] Fuchs, Lã¡Szlã³ Infinite abelian groups. Vol. I 1970

[10] Gitik, Moti The negation of the singular cardinal hypothesis from 𝑜(𝜅) Ann. Pure Appl. Logic 1989 209 234

[11] Griffith, Phillip A. Infinite abelian group theory 1970

[12] Higman, Graham Almost free groups Proc. London Math. Soc. (3) 1951 284 290

[13] Hill, Paul On the splitting of modules and abelian groups Canadian J. Math. 1974 68 77

[14] Hill, Paul On the freeness of abelian groups: A generalization of Pontryagin’s theorem Bull. Amer. Math. Soc. 1970 1118 1120

[15] Hill, Paul A special criterion for freeness 1974 311 314

[16] Hodges, Wilfrid In singular cardinality, locally free algebras are free Algebra Universalis 1981 205 220

[17] Jech, Thomas Set theory 1978

[18] Jensen, R. Bjã¶Rn The fine structure of the constructible hierarchy Ann. Math. Logic 1972

[19] Kanamori, A., Magidor, M. The evolution of large cardinal axioms in set theory 1978 99 275

[20] Laver, Richard Making the supercompactness of 𝜅 indestructible under 𝜅-directed closed forcing Israel J. Math. 1978 385 388

[21] Magidor, Menachem On the singular cardinals problem. I Israel J. Math. 1977 1 31

[22] Mekler, Alan H. How to construct almost free groups Canadian J. Math. 1980 1206 1228

[23] Menas, Telis K. A combinatorial property of 𝑝_{𝑘}𝜆 J. Symbolic Logic 1976 225 234

[24] Milner, E. C., Shelah, S. Some theorems on transversals 1975 1115 1126

[25] Shelah, Saharon A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals Israel J. Math. 1975 319 349

[26] Shelah, Saharon On successors of singular cardinals 1979 357 380

[27] Shelah, Saharon Proper forcing 1982

[28] Shelah, Saharon Incompactness in regular cardinals Notre Dame J. Formal Logic 1985 195 228

[29] Solovay, Robert M., Reinhardt, William N., Kanamori, Akihiro Strong axioms of infinity and elementary embeddings Ann. Math. Logic 1978 73 116

Cité par Sources :