Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1993_1179539_4,
     author = {Raugel, Genevi\~A{\textasciidieresis}ve and Sell, George R.},
     title = {Navier-Stokes equations on thin {3D} domains. {I.} {Global} attractors and global regularity of solutions},
     journal = {Journal of the American Mathematical Society},
     pages = {503--568},
     publisher = {mathdoc},
     volume = {06},
     number = {3},
     year = {1993},
     doi = {10.1090/S0894-0347-1993-1179539-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1179539-4/}
}
                      
                      
                    TY - JOUR AU - Raugel, Geneviève AU - Sell, George R. TI - Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions JO - Journal of the American Mathematical Society PY - 1993 SP - 503 EP - 568 VL - 06 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1179539-4/ DO - 10.1090/S0894-0347-1993-1179539-4 ID - 10_1090_S0894_0347_1993_1179539_4 ER -
%0 Journal Article %A Raugel, Geneviève %A Sell, George R. %T Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions %J Journal of the American Mathematical Society %D 1993 %P 503-568 %V 06 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1179539-4/ %R 10.1090/S0894-0347-1993-1179539-4 %F 10_1090_S0894_0347_1993_1179539_4
Raugel, Geneviève; Sell, George R. Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions. Journal of the American Mathematical Society, Tome 06 (1993) no. 3, pp. 503-568. doi: 10.1090/S0894-0347-1993-1179539-4
[1] , Attraktory èvolyutsionnykh uravneniÄ 1989 296
[2] , , Partial regularity of suitable weak solutions of the Navier-Stokes equations Comm. Pure Appl. Math. 1982 771 831
[3] , Navier-Stokes equations 1988
[4] Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations SIAM J. Math. Anal. 1989 74 97
[5] , , New a priori estimates for Navier-Stokes equations in dimension 3 Comm. Partial Differential Equations 1981 329 359
[6] , , Attractors for the Bénard problem: existence and physical bounds on their fractal dimension Nonlinear Anal. 1987 939 967
[7] , , Inertial manifolds for nonlinear evolutionary equations J. Differential Equations 1988 309 353
[8] , Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations J. Math. Pures Appl. (9) 1979 339 368
[9] , The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory 1987 55 73
[10] , On the Navier-Stokes initial value problem. I Arch. Rational Mech. Anal. 1964 269 315
[11] Partial differential equations of parabolic type 1964
[12] Book Review: The equations of Navier-Stokes and abstract parabolic equations Bull. Amer. Math. Soc. (N.S.) 1988 337 340
[13] Asymptotic behavior of dissipative systems 1988
[14] , Partial differential equations on thin domains 1992 63 97
[15] , Reaction-diffusion equation on thin domains J. Math. Pures Appl. (9) 1992 33 95
[16] , A damped hyperbolic equation on thin domains Trans. Amer. Math. Soc. 1992 185 219
[17] Geometric theory of semilinear parabolic equations 1981
[18] Ãber die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen Math. Nachr. 1951 213 231
[19] , On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid Izv. Akad. Nauk SSSR Ser. Mat. 1957 655 680
[20] Global analyticity up to the boundary of solutions of the Navier-Stokes equation Comm. Pure Appl. Math. 1980 545 566
[21] The mathematical theory of viscous incompressible flow 1969
[22] Quelques méthodes de résolution des problèmes aux limites non linéaires 1969
[23] , Un théorème dâexistence et unicité dans les équations de Navier-Stokes en dimension 2 C. R. Acad. Sci. Paris 1959 3519 3521
[24] , , Invariant helical subspaces for the Navier-Stokes equations Arch. Rational Mech. Anal. 1990 193 222
[25] Negatively invariant sets of compact maps and an extension of a theorem of Cartwright J. Differential Equations 1976 331 348
[26] On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation Proc. Japan Acad. 1967 827 832
[27] , Volterra integral equations and topological dynamics 1970
[28] Continuity of attractors RAIRO Modél. Math. Anal. Numér. 1989 519 533
[29] , Ãquations de Navier-Stokes dans des domaines minces en dimension trois: régularité globale C. R. Acad. Sci. Paris Sér. I Math. 1989 299 303
[30] , Lifting properties in skew-product flows with applications to differential equations Mem. Amer. Math. Soc. 1977
[31] , Dichotomies for linear evolutionary equations in Banach spaces J. Differential Equations 1994 17 67
[32] Nonautonomous differential equations and topological dynamics. I. The basic theory Trans. Amer. Math. Soc. 1967 241 262
[33] Nonautonomous differential equations and topological dynamics. I. The basic theory Trans. Amer. Math. Soc. 1967 241 262
[34] Differential equations without uniqueness and classical topological dynamics J. Differential Equations 1973 42 56
[35] Turbulence in fluid flows 1993
[36] On the interior regularity of weak solutions of the Navier-Stokes equations Arch. Rational Mech. Anal. 1962 187 195
[37] Navier-Stokes equations. Theory and numerical analysis 1977
[38] Behaviour at time ð¡ J. Differential Equations 1982 73 92
[39] Navier-Stokes equations and nonlinear functional analysis 1983
[40] Infinite-dimensional dynamical systems in mechanics and physics 1988
[41] The equations of Navier-Stokes and abstract parabolic equations 1985
Cité par Sources :
