Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions
Journal of the American Mathematical Society, Tome 06 (1993) no. 3, pp. 503-568

Voir la notice de l'article provenant de la source American Mathematical Society

We examine the Navier-Stokes equations (NS) on a thin $3$-dimensional domain ${\Omega _\varepsilon } = {Q_2} \times (0,\varepsilon )$, where ${Q_2}$ is a suitable bounded domain in ${\mathbb {R}^2}$ and $\varepsilon$ is a small, positive, real parameter. We consider these equations with various homogeneous boundary conditions, especially spatially periodic boundary conditions. We show that there are large sets $\mathcal {R}(\varepsilon )$ in ${H^1}({\Omega _\varepsilon })$ and $\mathcal {S}(\varepsilon )$ in ${W^{1,\infty }}((0,\infty ),{L^2}({\Omega _\varepsilon }))$ such that if ${U_0} \in \mathcal {R}(\varepsilon )$ and $F \in \mathcal {S}(\varepsilon )$, then (NS) has a strong solution $U(t)$ that remains in ${H^1}({\Omega _\varepsilon })$ for all $t \geq 0$ and in ${H^2}({\Omega _\varepsilon })$ for all $t > 0$. We show that the set of strong solutions of (NS) has a local attractor ${\mathfrak {A}_\varepsilon }$ in ${H^1}({\Omega _\varepsilon })$, which is compact in ${H^2}({\Omega _\varepsilon })$. Furthermore, this local attractor ${\mathfrak {A}_\varepsilon }$ turns out to be the global attractor for all the weak solutions (in the sense of Leray) of (NS). We also show that, under reasonable assumptions, ${\mathfrak {A}_\varepsilon }$ is upper semicontinuous at $\varepsilon = 0$.
@article{10_1090_S0894_0347_1993_1179539_4,
     author = {Raugel, Genevi\~A{\textasciidieresis}ve and Sell, George R.},
     title = {Navier-Stokes equations on thin {3D} domains. {I.} {Global} attractors and global regularity of solutions},
     journal = {Journal of the American Mathematical Society},
     pages = {503--568},
     publisher = {mathdoc},
     volume = {06},
     number = {3},
     year = {1993},
     doi = {10.1090/S0894-0347-1993-1179539-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1179539-4/}
}
TY  - JOUR
AU  - Raugel, Geneviève
AU  - Sell, George R.
TI  - Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions
JO  - Journal of the American Mathematical Society
PY  - 1993
SP  - 503
EP  - 568
VL  - 06
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1179539-4/
DO  - 10.1090/S0894-0347-1993-1179539-4
ID  - 10_1090_S0894_0347_1993_1179539_4
ER  - 
%0 Journal Article
%A Raugel, Geneviève
%A Sell, George R.
%T Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions
%J Journal of the American Mathematical Society
%D 1993
%P 503-568
%V 06
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1993-1179539-4/
%R 10.1090/S0894-0347-1993-1179539-4
%F 10_1090_S0894_0347_1993_1179539_4
Raugel, Geneviève; Sell, George R. Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions. Journal of the American Mathematical Society, Tome 06 (1993) no. 3, pp. 503-568. doi: 10.1090/S0894-0347-1993-1179539-4

[1] Babin, A. V., Vishik, M. I. Attraktory èvolyutsionnykh uravneniĭ 1989 296

[2] Caffarelli, L., Kohn, R., Nirenberg, L. Partial regularity of suitable weak solutions of the Navier-Stokes equations Comm. Pure Appl. Math. 1982 771 831

[3] Constantin, Peter, Foias, Ciprian Navier-Stokes equations 1988

[4] Dauge, Monique Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations SIAM J. Math. Anal. 1989 74 97

[5] FoiaåŸ, Ciprian, Guillopã©, Colette, Temam, Roger New a priori estimates for Navier-Stokes equations in dimension 3 Comm. Partial Differential Equations 1981 329 359

[6] Foias, C., Manley, O., Temam, R. Attractors for the Bénard problem: existence and physical bounds on their fractal dimension Nonlinear Anal. 1987 939 967

[7] Foias, Ciprian, Sell, George R., Temam, Roger Inertial manifolds for nonlinear evolutionary equations J. Differential Equations 1988 309 353

[8] FoiaåŸ, C., Temam, R. Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations J. Math. Pures Appl. (9) 1979 339 368

[9] Foias, Ciprian, Temam, Roger The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory 1987 55 73

[10] Fujita, Hiroshi, Kato, Tosio On the Navier-Stokes initial value problem. I Arch. Rational Mech. Anal. 1964 269 315

[11] Friedman, Avner Partial differential equations of parabolic type 1964

[12] Giga, Yoshikazu Book Review: The equations of Navier-Stokes and abstract parabolic equations Bull. Amer. Math. Soc. (N.S.) 1988 337 340

[13] Hale, Jack K. Asymptotic behavior of dissipative systems 1988

[14] Hale, J. K., Raugel, G. Partial differential equations on thin domains 1992 63 97

[15] Hale, Jack K., Raugel, Geneviã¨Ve Reaction-diffusion equation on thin domains J. Math. Pures Appl. (9) 1992 33 95

[16] Hale, Jack K., Raugel, Geneviã¨Ve A damped hyperbolic equation on thin domains Trans. Amer. Math. Soc. 1992 185 219

[17] Henry, Daniel Geometric theory of semilinear parabolic equations 1981

[18] Hopf, Eberhard Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen Math. Nachr. 1951 213 231

[19] Kiselev, A. A., Ladyå¾Enskaya, O. A. On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid Izv. Akad. Nauk SSSR Ser. Mat. 1957 655 680

[20] Komatsu, Gen Global analyticity up to the boundary of solutions of the Navier-Stokes equation Comm. Pure Appl. Math. 1980 545 566

[21] Ladyzhenskaya, O. A. The mathematical theory of viscous incompressible flow 1969

[22] Lions, J.-L. Quelques méthodes de résolution des problèmes aux limites non linéaires 1969

[23] Lions, Jacques-Louis, Prodi, Giovanni Un théorème d’existence et unicité dans les équations de Navier-Stokes en dimension 2 C. R. Acad. Sci. Paris 1959 3519 3521

[24] Mahalov, A., Titi, E. S., Leibovich, S. Invariant helical subspaces for the Navier-Stokes equations Arch. Rational Mech. Anal. 1990 193 222

[25] Mallet-Paret, John Negatively invariant sets of compact maps and an extension of a theorem of Cartwright J. Differential Equations 1976 331 348

[26] Masuda, Kyã»Ya On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation Proc. Japan Acad. 1967 827 832

[27] Miller, Richard K., Sell, George R. Volterra integral equations and topological dynamics 1970

[28] Raugel, Geneviã¨Ve Continuity of attractors RAIRO Modél. Math. Anal. Numér. 1989 519 533

[29] Raugel, Geneviã¨Ve, Sell, George R. Équations de Navier-Stokes dans des domaines minces en dimension trois: régularité globale C. R. Acad. Sci. Paris Sér. I Math. 1989 299 303

[30] Sacker, Robert J., Sell, George R. Lifting properties in skew-product flows with applications to differential equations Mem. Amer. Math. Soc. 1977

[31] Sacker, Robert J., Sell, George R. Dichotomies for linear evolutionary equations in Banach spaces J. Differential Equations 1994 17 67

[32] Sell, George R. Nonautonomous differential equations and topological dynamics. I. The basic theory Trans. Amer. Math. Soc. 1967 241 262

[33] Sell, George R. Nonautonomous differential equations and topological dynamics. I. The basic theory Trans. Amer. Math. Soc. 1967 241 262

[34] Sell, George R. Differential equations without uniqueness and classical topological dynamics J. Differential Equations 1973 42 56

[35] Turbulence in fluid flows 1993

[36] Serrin, James On the interior regularity of weak solutions of the Navier-Stokes equations Arch. Rational Mech. Anal. 1962 187 195

[37] Temam, Roger Navier-Stokes equations. Theory and numerical analysis 1977

[38] Temam, R. Behaviour at time 𝑡 J. Differential Equations 1982 73 92

[39] Temam, Roger Navier-Stokes equations and nonlinear functional analysis 1983

[40] Temam, Roger Infinite-dimensional dynamical systems in mechanics and physics 1988

[41] Von Wahl, Wolf The equations of Navier-Stokes and abstract parabolic equations 1985

Cité par Sources :