The fundamental group of the von Neumann algebra of a free group with infinitely many generators is ℝ₊\slash{0}
Journal of the American Mathematical Society, Tome 05 (1992) no. 3, pp. 517-532

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1992_1142260_1,
     author = {R\"Aƒdulescu, Florin},
     title = {The fundamental group of the von {Neumann} algebra of a free group with infinitely many generators is \^a„\^a‚Š\slash{0}},
     journal = {Journal of the American Mathematical Society},
     pages = {517--532},
     publisher = {mathdoc},
     volume = {05},
     number = {3},
     year = {1992},
     doi = {10.1090/S0894-0347-1992-1142260-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1142260-1/}
}
TY  - JOUR
AU  - Rădulescu, Florin
TI  - The fundamental group of the von Neumann algebra of a free group with infinitely many generators is ℝ₊\slash{0}
JO  - Journal of the American Mathematical Society
PY  - 1992
SP  - 517
EP  - 532
VL  - 05
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1142260-1/
DO  - 10.1090/S0894-0347-1992-1142260-1
ID  - 10_1090_S0894_0347_1992_1142260_1
ER  - 
%0 Journal Article
%A Rădulescu, Florin
%T The fundamental group of the von Neumann algebra of a free group with infinitely many generators is ℝ₊\slash{0}
%J Journal of the American Mathematical Society
%D 1992
%P 517-532
%V 05
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1142260-1/
%R 10.1090/S0894-0347-1992-1142260-1
%F 10_1090_S0894_0347_1992_1142260_1
Rădulescu, Florin. The fundamental group of the von Neumann algebra of a free group with infinitely many generators is ℝ₊\slash{0}. Journal of the American Mathematical Society, Tome 05 (1992) no. 3, pp. 517-532. doi: 10.1090/S0894-0347-1992-1142260-1

[1] Araki, Huzihiro, Woods, E. J. A classification of factors Publ. Res. Inst. Math. Sci. Ser. A 1968/1969 51 130

[2] Atiyah, M. F., Singer, I. M. The index of elliptic operators. IV Ann. of Math. (2) 1971 119 138

[3] Connes, A. A survey of foliations and operator algebras 1982 521 628

[4] Connes, A. Classification of injective factors. Cases 𝐼𝐼₁, 𝐼𝐼_{∞}, 𝐼𝐼𝐼_{𝜆}, 𝜆̸ Ann. of Math. (2) 1976 73 115

[5] Connes, Alain Une classification des facteurs de type 𝐼𝐼𝐼 Ann. Sci. École Norm. Sup. (4) 1973 133 252

[6] Connes, A. Factors of type 𝐼𝐼𝐼₁, property 𝐿_{𝜆}’ and closure of inner automorphisms J. Operator Theory 1985 189 211

[7] Doplicher, Sergio, Haag, Rudolf, Roberts, John E. Local observables and particle statistics. II Comm. Math. Phys. 1974 49 85

[8] Haagerup, Uffe Connes’ bicentralizer problem and uniqueness of the injective factor of type 𝐼𝐼𝐼₁ Acta Math. 1987 95 148

[9] Jones, V. F. R. Index for subfactors Invent. Math. 1983 1 25

[10] Kadison, Richard V., Ringrose, John R. Fundamentals of the theory of operator algebras. Vol. I 1983

[11] Murray, F. J., Von Neumann, J. On rings of operators. IV Ann. of Math. (2) 1943 716 808

[12] Popa, Sorin Some rigidity results in type 𝐼𝐼₁ factors C. R. Acad. Sci. Paris Sér. I Math. 1990 535 538

[13] Popa, S. Classification of subfactors: the reduction to commuting squares Invent. Math. 1990 19 43

[14] Powers, Robert T. Representations of uniformly hyperfinite algebras and their associated von Neumann rings Ann. of Math. (2) 1967 138 171

[15] Sakai, Shã´Ichir㴠𝐶*-algebras and 𝑊*-algebras 1971

[16] Singer, I. M. Some remarks on operator theory and index theory 1977 128 138

[17] Takesaki, Masamichi Duality for crossed products and the structure of von Neumann algebras of type III Acta Math. 1973 249 310

[18] Voiculescu, Dan Limit laws for random matrices and free products Invent. Math. 1991 201 220

[19] Wigner, Eugene P. On the distribution of the roots of certain symmetric matrices Ann. of Math. (2) 1958 325 327

[20] Longo, Roberto Index of subfactors and statistics of quantum fields. I Comm. Math. Phys. 1989 217 247

Cité par Sources :